3/7x+1/5=2/3x-1

Simple and best practice solution for 3/7x+1/5=2/3x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/7x+1/5=2/3x-1 equation:



3/7x+1/5=2/3x-1
We move all terms to the left:
3/7x+1/5-(2/3x-1)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 3x-1)!=0
x∈R
We get rid of parentheses
3/7x-2/3x+1+1/5=0
We calculate fractions
63x^2/525x^2+225x/525x^2+(-350x)/525x^2+1=0
We multiply all the terms by the denominator
63x^2+225x+(-350x)+1*525x^2=0
Wy multiply elements
63x^2+525x^2+225x+(-350x)=0
We get rid of parentheses
63x^2+525x^2+225x-350x=0
We add all the numbers together, and all the variables
588x^2-125x=0
a = 588; b = -125; c = 0;
Δ = b2-4ac
Δ = -1252-4·588·0
Δ = 15625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{15625}=125$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-125)-125}{2*588}=\frac{0}{1176} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-125)+125}{2*588}=\frac{250}{1176} =125/588 $

See similar equations:

| x+46=65 | | (6x)+(6x-9)+(6x*3)=180 | | (10m-30+28=180 | | -0.45x=0.33=-0.66 | | x-6=18 | | –2=p–1+1 | | 2k+3k+1=5k+7 | | 4x-x=+6 | | 4x+59+12x+11x+15x-35=360 | | Y=√5x-8 | | 24=−6(m+1)+18 | | 4x+59+12x+11x+15x+35=360 | | qq32+61=65+31 | | 5n+1+5n=10n+2-1 | | –9a+7a=6 | | y*60=10.5 | | 20x−10=−10+20x | | 8^3x-2=64 | | x-49=-30 | | 5(4x−2)=−10+20x | | 6m+5-2m+1=30 | | Y=5/2x-8 | | X-8(2x-5)=-23 | | (x-4)+(x-4)=2x-8 | | (24/4(8/4))=x | | 10r-10r+r-1=11 | | Y=11/6x-2 | | t/11=1 | | 12=5-7n | | 4j−7=9 | | 100+8y=75-10y | | b+21=34 |

Equations solver categories