If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/5x=1-10x+9
We move all terms to the left:
3/5x-(1-10x+9)=0
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
3/5x-(-10x+10)=0
We get rid of parentheses
3/5x+10x-10=0
We multiply all the terms by the denominator
10x*5x-10*5x+3=0
Wy multiply elements
50x^2-50x+3=0
a = 50; b = -50; c = +3;
Δ = b2-4ac
Δ = -502-4·50·3
Δ = 1900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1900}=\sqrt{100*19}=\sqrt{100}*\sqrt{19}=10\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{19}}{2*50}=\frac{50-10\sqrt{19}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{19}}{2*50}=\frac{50+10\sqrt{19}}{100} $
| -559=t+-145 | | 7x(x-1)=3x+19 | | e+23=78 | | -17=10b | | h/28=-20 | | -17=b10 | | 16=4+3(t-2 | | 150=-10z | | (2x+3)^=3+(4x+3) | | p/23=17 | | p+13=509 | | X^2-64x+256=0 | | 126=p-39 | | +2+b/3=7 | | k+39=89 | | 7x+8=10+4x | | y+36=97 | | 23=5×m-7 | | 11h=891 | | 19-2a=7a6+4a | | y-23=77 | | -11=j/31 | | 9/4x+4=32 | | q-27=25 | | -15=5w+12-2w+6 | | X+2y-100=0 | | -3(8k+5)=3(9-1k) | | 2+3=12(s-3) | | 6x(4+2x)=12 | | -x^2+4x+(-2-x)^2=-1+9x | | -x^2+4x+(-2-x)^2=-1+92-x | | x+.18x=770 |