3/5x-1/3x=4/9+1

Simple and best practice solution for 3/5x-1/3x=4/9+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x-1/3x=4/9+1 equation:



3/5x-1/3x=4/9+1
We move all terms to the left:
3/5x-1/3x-(4/9+1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We get rid of parentheses
3/5x-1/3x-1-4/9=0
We calculate fractions
(-180x^2)/1215x^2+729x/1215x^2+(-405x)/1215x^2-1=0
We multiply all the terms by the denominator
(-180x^2)+729x+(-405x)-1*1215x^2=0
Wy multiply elements
(-180x^2)-1215x^2+729x+(-405x)=0
We get rid of parentheses
-180x^2-1215x^2+729x-405x=0
We add all the numbers together, and all the variables
-1395x^2+324x=0
a = -1395; b = 324; c = 0;
Δ = b2-4ac
Δ = 3242-4·(-1395)·0
Δ = 104976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{104976}=324$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(324)-324}{2*-1395}=\frac{-648}{-2790} =36/155 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(324)+324}{2*-1395}=\frac{0}{-2790} =0 $

See similar equations:

| 114=2x+6(-x+15) | | 13=-2/5x+11 | | 91-(5x+6)=5(x+6)+x | | d×5.20=2.40 | | 15.39+0.06p=16.14-0.13p | | 7x-11=9×-27 | | 93=7v | | -111=2x-3(4x+7) | | 3x+12-6x=17-18x+15x-5 | | 6x+5(-x-13)=-71 | | a/75=75/100 | | 10x-3+4x=9x-8+3 | | s2-3s+12=0 | | 13-13y=-12y | | 174=-3x-7(-2x-17) | | 4j=3j+12 | | 5x-12)=(2x+24) | | 15+8z=11z | | 3m-12=2m+24 | | -16w+-w=17 | | 5x^2-3x=-3x+25 | | -3+1/2n=1/2(-n+14)4 | | 13(6m+21)=m−7 | | -8(z−95)=40 | | 6(9.99)+2x=25.92 | | 6x+2x=25.92 | | |1+10x|=29 | | -12q=13q-14 | | 4(9.99)+3y=33.93 | | 18.21=3g+3.72 | | 1÷3x=2 | | 6(9.99)+2x=51.84 |

Equations solver categories