3/5x+3/10x=28/15

Simple and best practice solution for 3/5x+3/10x=28/15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x+3/10x=28/15 equation:



3/5x+3/10x=28/15
We move all terms to the left:
3/5x+3/10x-(28/15)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We add all the numbers together, and all the variables
3/5x+3/10x-(+28/15)=0
We get rid of parentheses
3/5x+3/10x-28/15=0
We calculate fractions
(-1400x^2)/750x^2+450x/750x^2+225x/750x^2=0
We multiply all the terms by the denominator
(-1400x^2)+450x+225x=0
We add all the numbers together, and all the variables
(-1400x^2)+675x=0
We get rid of parentheses
-1400x^2+675x=0
a = -1400; b = 675; c = 0;
Δ = b2-4ac
Δ = 6752-4·(-1400)·0
Δ = 455625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{455625}=675$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(675)-675}{2*-1400}=\frac{-1350}{-2800} =27/56 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(675)+675}{2*-1400}=\frac{0}{-2800} =0 $

See similar equations:

| (43)2=9x-31 | | 2-p=3 | | 43•2=9x-31 | | − | | − | | (x^2-2)(5x+3)=0 | | -8(x-8)=8(x+6) | | 5(-3+m)=-12+5m-4 | | -4x+3000=72000 | | -12-9x=-6(x+3) | | 85=1/2h(10+7) | | -6y+29-4y=-6 | | 20+0.5x=30+0.25x | | 5(x-4)+x=6(x—5)+10 | | 2x+5x-20x=(5+2) | | 20+0.5=30+0.35x | | x-3/3-x+5/12=4x-4/12 | | 8(x+2)+8=8x+8 | | 4(3x+5)=7(x+3)−8 | | x^2-12x-1/(x-6)(x-6)=0 | | 7(x-2)=3(2x=1) | | 2.5+9y=-31.7 | | 0.08(y-3)+0.06=0.10y-0.3 | | .024x+0.42=1.74 | | 4(4c-1)-7=12c+9 | | 81f=63(9) | | 81f=63/9 | | (3x-5)²=-1 | | -|2x-8|-6=12 | | -6+2k=10k-15+k | | (x+2)2-3=1 | | 7x-8=-21x+20 |

Equations solver categories