3/5x+2=2/10x+12

Simple and best practice solution for 3/5x+2=2/10x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x+2=2/10x+12 equation:



3/5x+2=2/10x+12
We move all terms to the left:
3/5x+2-(2/10x+12)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x+12)!=0
x∈R
We get rid of parentheses
3/5x-2/10x-12+2=0
We calculate fractions
30x/50x^2+(-10x)/50x^2-12+2=0
We add all the numbers together, and all the variables
30x/50x^2+(-10x)/50x^2-10=0
We multiply all the terms by the denominator
30x+(-10x)-10*50x^2=0
Wy multiply elements
-500x^2+30x+(-10x)=0
We get rid of parentheses
-500x^2+30x-10x=0
We add all the numbers together, and all the variables
-500x^2+20x=0
a = -500; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-500)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-500}=\frac{-40}{-1000} =1/25 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-500}=\frac{0}{-1000} =0 $

See similar equations:

| -82-8x-10=170 | | 3x/5=(x-2)/4 | | 5(x-1)+2(x-3)=x+15 | | 3/8+r=2/3 | | -4x+(2/3)=(7/3) | | Z2+y=306 | | 1.6x−0.6=5.8 | | -6(3x+7)÷3-4=6 | | 18w=6w-12-6 | | |3x+9|=x+15 | | 5c+8-6=32 | | 2.1r=5.04 | | 12(3x-2)-4(9x-3)=-12 | | −5y+4(9y−2)=−8+9(−7−y) | | -2(4-8n)-2=118 | | r/28=1.8/2.1 | | X=171+8x | | 1/2(4c+10)=27 | | 5/11x+2/3x-1/6x=189 | | 87=-3(1+5n) | | 16x+6x=52-x | | 52/13=90/x | | x+45=2x-6 | | 2.1x-1.5=1.8x-0.06 | | 6-2(x-3)=3(x-1)+2 | | -6(3n-3)=18-18n | | 6(x-2)+3=5-2(x+1) | | 13/52=x/90 | | -3(2-x)=5(x+1) | | -8a+2(3a-3)=4-2a | | 2(x+3)=6(x-2) | | 6d+8=24+3d |

Equations solver categories