3/5p+.2(40-p)=0

Simple and best practice solution for 3/5p+.2(40-p)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5p+.2(40-p)=0 equation:



3/5p+.2(40-p)=0
Domain of the equation: 5p!=0
p!=0/5
p!=0
p∈R
We add all the numbers together, and all the variables
3/5p+.2(-1p+40)=0
We multiply parentheses
3/5p-0.2p+8=0
We multiply all the terms by the denominator
-(0.2p)*5p+8*5p+3=0
We add all the numbers together, and all the variables
-(+0.2p)*5p+8*5p+3=0
We multiply parentheses
-0p^2+8*5p+3=0
Wy multiply elements
-0p^2+40p+3=0
We add all the numbers together, and all the variables
-1p^2+40p+3=0
a = -1; b = 40; c = +3;
Δ = b2-4ac
Δ = 402-4·(-1)·3
Δ = 1612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1612}=\sqrt{4*403}=\sqrt{4}*\sqrt{403}=2\sqrt{403}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{403}}{2*-1}=\frac{-40-2\sqrt{403}}{-2} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{403}}{2*-1}=\frac{-40+2\sqrt{403}}{-2} $

See similar equations:

| 8d-5=8d-5 | | 4x-10x=4 | | 77x(92+2)=457 | | -6+8=y+9-7y-1 | | 2x+4=-7x+85 | | 5n+7+n=3n-2+2(2n+1)= | | 4b-12=2b+3 | | 1246=535x-1073034 | | 9-x=27+x | | 5+3x+4x=-9 | | 7x+6=80 | | 8j=4j+2j | | 1/3+c=8/5 | | 3(2)^x=6 | | 2x(7-28)=66 | | .5(b+14)=((b+14)/2) | | 9x-2(x-8)=7(x-1)+2 | | -4x+9=-6x+17 | | 2(3h-4)=3h-3-2h | | 2/3x+4/3=-2/5 | | 6+-5(2x-3)=4x+7 | | -1=b/6-7 | | -7/6c+1/2=-5/6c^2 | | P=4q-5 | | -128=-4(4x+4) | | 7-n=11n | | 9x-2(x-8=7(x-1)+2 | | 3-5x=3x+99 | | 2(12-x+1=-5 | | 164=-4(-7x+8) | | 34=-4x6x | | 65-2x+x+x-10=165 |

Equations solver categories