3/5b-2+7b-12-2/5b=14

Simple and best practice solution for 3/5b-2+7b-12-2/5b=14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5b-2+7b-12-2/5b=14 equation:



3/5b-2+7b-12-2/5b=14
We move all terms to the left:
3/5b-2+7b-12-2/5b-(14)=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
We add all the numbers together, and all the variables
7b+3/5b-2/5b-28=0
We multiply all the terms by the denominator
7b*5b-28*5b+3-2=0
We add all the numbers together, and all the variables
7b*5b-28*5b+1=0
Wy multiply elements
35b^2-140b+1=0
a = 35; b = -140; c = +1;
Δ = b2-4ac
Δ = -1402-4·35·1
Δ = 19460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19460}=\sqrt{4*4865}=\sqrt{4}*\sqrt{4865}=2\sqrt{4865}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-2\sqrt{4865}}{2*35}=\frac{140-2\sqrt{4865}}{70} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+2\sqrt{4865}}{2*35}=\frac{140+2\sqrt{4865}}{70} $

See similar equations:

| 756=-12m | | 3x+27=28 | | 75+(3x)=90 | | 12+1/2(4x-16)=14 | | 2x+12x=5 | | 17x-7+22=-23+2x-7 | | 5a=-100 | | 1/3m+3-5/m=-15 | | 25000+450x=125+680x | | g-312=113 | | 19=k/7 | | 3x-15+7x=-5 | | 16.01=3g+3.59 | | (3x+30)+(5x-12)=90 | | 12+.5(4x-16)=14 | | 6x+7=3x+0 | | +6x=2x+27 | | 7X-3=25;x=5 | | 10=3k-14 | | 3x–4x–7=23 | | 10–2x=6 | | p-712=19 | | -9=-3x-(-36) | | (2x+0.8)/(9)=1.2 | | 6m-2m+12=-24 | | 2x+8+3x+12=40 | | -9/4v-4/5=7/10-2v | | 6=2g-6 | | x3x-1/4=8 | | c/3+13=19 | | (x+3)/2=32 | | 3(5-2h)+9=180 |

Equations solver categories