If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/5x+x+4(3/5x)=2000
We move all terms to the left:
3/5x+x+4(3/5x)-(2000)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 5x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
3/5x+x+4(+3/5x)-2000=0
We add all the numbers together, and all the variables
x+3/5x+4(+3/5x)-2000=0
We multiply parentheses
x+3/5x+12x-2000=0
We multiply all the terms by the denominator
x*5x+12x*5x-2000*5x+3=0
Wy multiply elements
5x^2+60x^2-10000x+3=0
We add all the numbers together, and all the variables
65x^2-10000x+3=0
a = 65; b = -10000; c = +3;
Δ = b2-4ac
Δ = -100002-4·65·3
Δ = 99999220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{99999220}=\sqrt{4*24999805}=\sqrt{4}*\sqrt{24999805}=2\sqrt{24999805}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10000)-2\sqrt{24999805}}{2*65}=\frac{10000-2\sqrt{24999805}}{130} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10000)+2\sqrt{24999805}}{2*65}=\frac{10000+2\sqrt{24999805}}{130} $
| t+1.5=3.6 | | -3+2u=9 | | 2(7+y/2)-y=7 | | 8x-2x+9=x-8+17 | | -3/8=1/8-2/7x | | 2/3x+60=2x | | 3(2x-5)=-2(2x+7) | | -5=w/4+7 | | m.4=m-11 | | 7.5x=41 | | 1/2(2-4x)+2=13 | | 10=25b | | 35-4x=15+6x | | 4n=-6 | | 5n=5=45 | | 60x+90=50x+110 | | 16k-11k=10 | | 3.375+.625x=24 | | 7+p/5=6 | | 5(2)^x=343 | | -2g+2.6=3.4 | | 5(20^x=343 | | -21=-6+3v | | 1/2x+12=12 | | 10-6n=12 | | |5x|-6=34 | | 2p+13/4=37/4 | | 21b^2-26b+8=0 | | 1/4x-16=2 | | 80=13+5/11x | | 21b-26b+8=0 | | (x)=x2−4x−60 |