3/4y-4=7/8y+1

Simple and best practice solution for 3/4y-4=7/8y+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4y-4=7/8y+1 equation:



3/4y-4=7/8y+1
We move all terms to the left:
3/4y-4-(7/8y+1)=0
Domain of the equation: 4y!=0
y!=0/4
y!=0
y∈R
Domain of the equation: 8y+1)!=0
y∈R
We get rid of parentheses
3/4y-7/8y-1-4=0
We calculate fractions
24y/32y^2+(-28y)/32y^2-1-4=0
We add all the numbers together, and all the variables
24y/32y^2+(-28y)/32y^2-5=0
We multiply all the terms by the denominator
24y+(-28y)-5*32y^2=0
Wy multiply elements
-160y^2+24y+(-28y)=0
We get rid of parentheses
-160y^2+24y-28y=0
We add all the numbers together, and all the variables
-160y^2-4y=0
a = -160; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-160)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-160}=\frac{0}{-320} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-160}=\frac{8}{-320} =-1/40 $

See similar equations:

| 2/10=n/30 | | 3x+33=6(x+5) | | x+3.9=5.17 | | v+38=6v-47 | | 32.99+0.5x=29.94+.10x | | 2x-10+5x+22=180 | | w-1=2w-19 | | 5a-3=8a-33 | | x+39/10=51/6 | | -1.5x-14.5=-31 | | 11x+100=15x | | 3u-41=u-1 | | -7x+23=-3x+11 | | -4v-9=3v+5 | | 5t+30=11T-6 | | 4u-6=-34 | | 1x+21+4x=-33 | | 6-4(5-4m)=8m+2(-7-6m) | | x^2-11x-19=-9x+5 | | -3n-22=2(3-5n) | | 2^(0.1x)-5=7 | | 8x+6x+5=180 | | x5-12x3=0 | | 8x-10=2x-20 | | 13x-23=22+4x | | -3(8b-1)=37+7b | | 13x-23=22+x4 | | (7t-2)=(9t-6) | | 2x+60=126 | | 6+x/9=4 | | 3x+3(3x-16)=-108 | | 57(x+4)=51(2x-7) |

Equations solver categories