3/4y+6=4/12y+4

Simple and best practice solution for 3/4y+6=4/12y+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4y+6=4/12y+4 equation:



3/4y+6=4/12y+4
We move all terms to the left:
3/4y+6-(4/12y+4)=0
Domain of the equation: 4y!=0
y!=0/4
y!=0
y∈R
Domain of the equation: 12y+4)!=0
y∈R
We get rid of parentheses
3/4y-4/12y-4+6=0
We calculate fractions
36y/48y^2+(-16y)/48y^2-4+6=0
We add all the numbers together, and all the variables
36y/48y^2+(-16y)/48y^2+2=0
We multiply all the terms by the denominator
36y+(-16y)+2*48y^2=0
Wy multiply elements
96y^2+36y+(-16y)=0
We get rid of parentheses
96y^2+36y-16y=0
We add all the numbers together, and all the variables
96y^2+20y=0
a = 96; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·96·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*96}=\frac{-40}{192} =-5/24 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*96}=\frac{0}{192} =0 $

See similar equations:

| 13+2x=4x+11 | | 15w-14w=17 | | (x÷3)-10=6 | | 5u-14=5u-14 | | (3+x)8=16 | | 4R+6=6+4r | | -8q+(-19q)+(-8)=19 | | 8(3+4x)-12=18x+13-7 | | 2-(3x+2)=-(5x-6)+2(2x+3) | | 5(5x-2)=4x-7 | | 2-(3x+2)=-(5x-6)+2(2x+3 | | -16y-6y-(-17)=-5 | | 12x+16=28 | | (3x^2)+3x=500 | | 20=2(v+4) | | 5x+25=5x+2 | | 6(0.5n-2)=n-8n-2 | | 5x+25=5x2 | | T=2s+4.55 | | 6=10-n | | -19k+20k+-7=-5 | | 12a/25=3a/5 | | 3=-4+x/21 | | -6y=-2-(-4) | | -9x+6=-x+ | | 7g-20=20-4g+7g | | 4j+j-5=10 | | -6y=-2+-4 | | 18+16b=18b | | 18-17y=-19y-16 | | 12.5=n/5 | | -2y-4=-y+7 |

Equations solver categories