3/4x-18=1/2x+59

Simple and best practice solution for 3/4x-18=1/2x+59 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x-18=1/2x+59 equation:



3/4x-18=1/2x+59
We move all terms to the left:
3/4x-18-(1/2x+59)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x+59)!=0
x∈R
We get rid of parentheses
3/4x-1/2x-59-18=0
We calculate fractions
6x/8x^2+(-4x)/8x^2-59-18=0
We add all the numbers together, and all the variables
6x/8x^2+(-4x)/8x^2-77=0
We multiply all the terms by the denominator
6x+(-4x)-77*8x^2=0
Wy multiply elements
-616x^2+6x+(-4x)=0
We get rid of parentheses
-616x^2+6x-4x=0
We add all the numbers together, and all the variables
-616x^2+2x=0
a = -616; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-616)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-616}=\frac{-4}{-1232} =1/308 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-616}=\frac{0}{-1232} =0 $

See similar equations:

| -5/9x-7/36x+1/4x=-72 | | -10n=-14-12n | | 14x+18=-30-2x | | 8-9z=21z-17 | | 3+3x=6x+6 | | -61=d=(-18) | | 13-12x=1x | | 3k-10=-34 | | -6r=8+r | | 5k-6=14-5k | | -3(5-9q)=25+7q | | 15q-20=14+8q+15 | | 9x-2x+68=9x+68 | | 3c+2=-13 | | 4(x-3)=x+42 | | 6+5x=316 | | |r-4|=14 | | 3h-5+11=18 | | -7n-9=-6n | | N-1-3n=5 | | 3.7=9.3+0.7x | | 2x-(3x-12)=-8 | | 88-22=2w+9w | | 292-x=152 | | 5x-6=316 | | 3x+72=28​ | | 7x-2=-7+6x | | 1/5x-2/3=8 | | 4(13b+15)-2b=100+10b | | 3x+7=-2x+4 | | 7j=6j-5 | | v-26=-10 |

Equations solver categories