3/4x+2x-3=-14x+21

Simple and best practice solution for 3/4x+2x-3=-14x+21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x+2x-3=-14x+21 equation:



3/4x+2x-3=-14x+21
We move all terms to the left:
3/4x+2x-3-(-14x+21)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
2x+3/4x-(-14x+21)-3=0
We get rid of parentheses
2x+3/4x+14x-21-3=0
We multiply all the terms by the denominator
2x*4x+14x*4x-21*4x-3*4x+3=0
Wy multiply elements
8x^2+56x^2-84x-12x+3=0
We add all the numbers together, and all the variables
64x^2-96x+3=0
a = 64; b = -96; c = +3;
Δ = b2-4ac
Δ = -962-4·64·3
Δ = 8448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8448}=\sqrt{256*33}=\sqrt{256}*\sqrt{33}=16\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{33}}{2*64}=\frac{96-16\sqrt{33}}{128} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{33}}{2*64}=\frac{96+16\sqrt{33}}{128} $

See similar equations:

| 2.5-x=0.04 | | d=-12/3 | | 3m–6–4m+8=23 | | 22=y/5-17 | | q=-(-14) | | 28=-8y+2(y+8) | | 28x7=195 | | 2^(x-3)=6^(2x) | | f=12+-6 | | 28x7=67 | | 20x+30x=3/10 | | f-15=2 | | f−15=2 | | t=2(8) | | f+18=-1 | | 4x-9+1-9x=180 | | f-16=-6 | | 4(3x-2)-2x=2 | | 3u+4(u-6)=11 | | f=2(9) | | 11/5x-8=10 | | 11/5x=5x2 | | 1.14x-5=23 | | 5x-2x+9=6X | | b=-13+1 | | 120x+1070=25x | | n+2=-8-n+4n | | 4x+-2=12 | | n/4=–3 | | -6t+7=79 | | n4=–3 | | -5k+14=74 |

Equations solver categories