3/4n+4=10,n=8

Simple and best practice solution for 3/4n+4=10,n=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4n+4=10,n=8 equation:



3/4n+4=10.n=8
We move all terms to the left:
3/4n+4-(10.n)=0
Domain of the equation: 4n!=0
n!=0/4
n!=0
n∈R
We add all the numbers together, and all the variables
3/4n-(+10.n)+4=0
We get rid of parentheses
3/4n-10.n+4=0
We multiply all the terms by the denominator
-(10.n)*4n+4*4n+3=0
We add all the numbers together, and all the variables
-(+10.n)*4n+4*4n+3=0
We multiply parentheses
-40n^2+4*4n+3=0
Wy multiply elements
-40n^2+16n+3=0
a = -40; b = 16; c = +3;
Δ = b2-4ac
Δ = 162-4·(-40)·3
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{46}}{2*-40}=\frac{-16-4\sqrt{46}}{-80} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{46}}{2*-40}=\frac{-16+4\sqrt{46}}{-80} $

See similar equations:

| 5m+12.5=5M+12.5 | | 1-2x+5=-4x-3 | | 8x+6=3x+21, | | -5x=12.245 | | 126=6(8+k) | | 34=-4x+26 | | x+3.11=9.1 | | n+43=83 | | 291=74-u | | 2x=x72= | | 2(3x+7)=-28 | | 2/3x3=19 | | q−8|=14 | | X2+10x+14=0 | | 2/3a+a=600 | | 3x2-2=0 | | -8n+9(1+5n)=-6n-14 | | -6x+4(1+5x)=-6x-16 | | 13x-10=28x-30 | | 50=5(8+r) | | 12x-20=6x-2 | | 2(x-1)+7=4x-2(-2+x) | | 9u−7=10u | | 4+((1/x)-2)=40 | | -(8v-5)=-(6+8v)+7 | | (x-1)^2=49 | | 3r+6(-7r-1)=72 | | a.T = 4845 | | -8=6+6n-2 | | 1.6h-7.2=4h-30 | | 7y+3=3y+6=15y-11 | | 12-6x=10x-2 |

Equations solver categories