If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4*h-5=1/4*h-1
We move all terms to the left:
3/4*h-5-(1/4*h-1)=0
Domain of the equation: 4*h!=0
h!=0/1
h!=0
h∈R
Domain of the equation: 4*h-1)!=0We get rid of parentheses
h∈R
3/4*h-1/4*h+1-5=0
We multiply all the terms by the denominator
1*4*h-5*4*h+3-1=0
We add all the numbers together, and all the variables
1*4*h-5*4*h+2=0
Wy multiply elements
4h*h-20h*h+2=0
Wy multiply elements
4h^2-20h^2+2=0
We add all the numbers together, and all the variables
-16h^2+2=0
a = -16; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-16)·2
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-16}=\frac{0-8\sqrt{2}}{-32} =-\frac{8\sqrt{2}}{-32} =-\frac{\sqrt{2}}{-4} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-16}=\frac{0+8\sqrt{2}}{-32} =\frac{8\sqrt{2}}{-32} =\frac{\sqrt{2}}{-4} $
| 8*3^n-1-21=51 | | 16=x/ | | 25=120/3.14h | | 3x-1+6=2x-7 | | 17=w+67 | | 18–12+x=10 | | m+7=-46 | | 4x²−12=(5x−3)·(5x+3)x² | | x+42=4 | | (2x+4)=2x–8 | | 3x+25=4x+2 | | 3/2x=7/4x | | -28m-2m=-20 | | 19=48﹤2x+10 | | w=131;w+124 | | 2r-1=−5 | | 3x+3=6x–15 | | 63=3q | | f=9;5f | | 7w-2=-2 | | 160x+14000=-200x24000 | | 4(2x+4)=2x–8 | | 7p+4=3p−12 | | 2x2+16=8x | | 9x^2 =16 | | 9x2 =16 | | 17x+5=1495 | | (2x-7)-(6x-2)-x=180 | | 360°=x°+(2x-36)°+x°+(2x-36)° | | –7−9s=–8s+1 | | 8(x+3)=54 | | 6x-x2=10 |