3/4(x)+5=180-x

Simple and best practice solution for 3/4(x)+5=180-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4(x)+5=180-x equation:



3/4(x)+5=180-x
We move all terms to the left:
3/4(x)+5-(180-x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
3/4x-(-1x+180)+5=0
We get rid of parentheses
3/4x+1x-180+5=0
We multiply all the terms by the denominator
1x*4x-180*4x+5*4x+3=0
Wy multiply elements
4x^2-720x+20x+3=0
We add all the numbers together, and all the variables
4x^2-700x+3=0
a = 4; b = -700; c = +3;
Δ = b2-4ac
Δ = -7002-4·4·3
Δ = 489952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{489952}=\sqrt{16*30622}=\sqrt{16}*\sqrt{30622}=4\sqrt{30622}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-700)-4\sqrt{30622}}{2*4}=\frac{700-4\sqrt{30622}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-700)+4\sqrt{30622}}{2*4}=\frac{700+4\sqrt{30622}}{8} $

See similar equations:

| 2-n=3/8 | | 4a-12=21 | | -10x²-x-9=0 | | 310+3x=9 | | (x/4)+((2x)/3)+((13/4)-(1/3))=((14/3)+1) | | 9x+26=5x+2 | | 16x^2+9=25 | | 5x+3x-4x+x+2x-6x=73 | | ((x+13)/4)+(13/3)=1 | | 4x-x+2x-3x+2x-3x=12+31 | | 25h-10=21h+8 | | 7+y÷2=3 | | 0=7+(y/2) | | 7+y÷2=-3 | | x+3x-2x+x-2x=17 | | x=3x-2x=x-2x17 | | 4(3.14)=s5(3.141) | | 5g-7=4g+2 | | (5x-6)+(3x+12)=180 | | X+2x*x=210 | | x(x-1)=-420 | | −40=4x+20+x | | t/4+7/2=t/2-1/6 | | 80=2×(10x+x) | | x/3–x/2=6 | | -5/8=8.x | | -12/2=-7.x | | a+3.6=5.2 | | t+3/4=6t-7/4 | | -4/4=-3.x | | 5m=4/m | | x2–64=0. |

Equations solver categories