If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4(12x+8)-9=-1/3(27x-21)
We move all terms to the left:
3/4(12x+8)-9-(-1/3(27x-21))=0
Domain of the equation: 4(12x+8)!=0
x∈R
Domain of the equation: 3(27x-21))!=0We calculate fractions
x∈R
(9x2/(4(12x+8)*3(27x-21)))+(-(-4x1)/(4(12x+8)*3(27x-21)))-9=0
We calculate terms in parentheses: +(9x2/(4(12x+8)*3(27x-21))), so:
9x2/(4(12x+8)*3(27x-21))
We multiply all the terms by the denominator
9x2
We add all the numbers together, and all the variables
9x^2
Back to the equation:
+(9x^2)
We calculate terms in parentheses: +(-(-4x1)/(4(12x+8)*3(27x-21))), so:a = 9; b = 4; c = -9;
-(-4x1)/(4(12x+8)*3(27x-21))
We add all the numbers together, and all the variables
-(-4x)/(4(12x+8)*3(27x-21))
We multiply all the terms by the denominator
-(-4x)
We get rid of parentheses
4x
Back to the equation:
+(4x)
Δ = b2-4ac
Δ = 42-4·9·(-9)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{85}}{2*9}=\frac{-4-2\sqrt{85}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{85}}{2*9}=\frac{-4+2\sqrt{85}}{18} $
| 4x^2+6x-30=0 | | 4x+3=27x-18 | | 4x^2+6x-300=0 | | E=-15w+610 | | 0.04(n-550)=107 | | 3.8x-8.2=18.4 | | 1/3(12x+27)-6=-3/4(36x-24) | | 3k+6=3(4k-14)+66 | | 3k+6=3(4k-14)+16 | | 150x+200x=3250 | | 19x-2x=87 | | 7m+9m=16m | | 7m+9m=17m | | 3.3d-4.3=-1.6(8d+8) | | (5*k)-13=15 | | 1/4m+5/4=4 | | -3-5x=16-18x | | 15=(5*k)-13 | | 6-(8*p)=38 | | -2/3x=-5/7 | | 6x-11=13+2x | | (1/3*y)-18=2 | | -2*v+9=25 | | 1/x+1/11-x=11/28 | | 3+3x=30-4x2 | | 11x^2-121x-308=0 | | 3/5y+y=8000 | | -8/9=4t | | 45=2x+10 | | m-3/4=m=3/5 | | 45=3x-10 | | 7/9=6x |