3/3k-5=1/4k-1

Simple and best practice solution for 3/3k-5=1/4k-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/3k-5=1/4k-1 equation:



3/3k-5=1/4k-1
We move all terms to the left:
3/3k-5-(1/4k-1)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 4k-1)!=0
k∈R
We get rid of parentheses
3/3k-1/4k+1-5=0
We calculate fractions
12k/12k^2+(-3k)/12k^2+1-5=0
We add all the numbers together, and all the variables
12k/12k^2+(-3k)/12k^2-4=0
We multiply all the terms by the denominator
12k+(-3k)-4*12k^2=0
Wy multiply elements
-48k^2+12k+(-3k)=0
We get rid of parentheses
-48k^2+12k-3k=0
We add all the numbers together, and all the variables
-48k^2+9k=0
a = -48; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-48)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-48}=\frac{-18}{-96} =3/16 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-48}=\frac{0}{-96} =0 $

See similar equations:

| X^2+(x+2)^2=290 | | 3x(2x+16)(x-1)=0 | | x+12=3(x-4) | | (8-x)x=5 | | 11=-2.5x+15.5 | | 4z^2-3z+8=0 | | 6x-2=14x-24 | | -2+x=-26 | | -3=k(2) | | u+27/8=6/16 | | |x+3|+|x-2|=5 | | 5x-75=2x-9 | | 4=3x34 | | 3x=574446677663464336 | | 8x=2^x | | |x+3|+|x-2|=0 | | (1/3x+1)(1/4x+2)=x+13 | | Y2-5y=0 | | (x+1)+(x+2)=x/2-5 | | n/3=48/n | | 56x+57=13322 | | (x-3)÷2=5 | | 4(2y+1)=2)12 | | x+(x+1)=130 | | 0.5x=1.05-x | | x=2(x-400,000) | | x*2+x=66 | | 1.61*x=4.64-x | | 12x-232=2x-12 | | (5^x)=10 | | 14w-5w=63 | | (t+2)/3=-5 |

Equations solver categories