If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2x=6(4-x)/2
We move all terms to the left:
3/2x-(6(4-x)/2)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
3/2x-(6(-1x+4)/2)=0
We calculate fractions
()/4x^2+(-(6(-1x+4)*2x)/4x^2=0
We multiply all the terms by the denominator
(-(6(-1x+4)*2x)+()=0
We calculate terms in parentheses: +(-(6(-1x+4)*2x)+(), so:We get rid of parentheses
-(6(-1x+4)*2x)+(
We add all the numbers together, and all the variables
-(6(-1x+4)*2x)
We calculate terms in parentheses: -(6(-1x+4)*2x), so:We get rid of parentheses
6(-1x+4)*2x
We multiply parentheses
-12x^2+48x
Back to the equation:
-(-12x^2+48x)
12x^2-48x
Back to the equation:
+(12x^2-48x)
12x^2-48x=0
a = 12; b = -48; c = 0;
Δ = b2-4ac
Δ = -482-4·12·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-48}{2*12}=\frac{0}{24} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+48}{2*12}=\frac{96}{24} =4 $
| -6(m+10)=78 | | 2(x+4)-5(x+3)=32 | | 27=-7w+4(w+6) | | 166=-4x-6(8x+7) | | -2=7(x+4)-2x | | 8x-21=x+70 | | -15=5y+5 | | 2x+4x=5/8 | | 6x+11(0)=5 | | 7x+2=8+2 | | 0.9(0.84+5x)=4.7x | | 70-v=189 | | 2x+58=3x+22 | | 3x+84-15=180 | | 7x+2=7+2x | | 5y+y=-19-175 | | -5(5-3v)=-1 | | 7x+2=5x+# | | 5/3+2/3x=29/12+7/4x+1/4 | | X+8=2(4x-6) | | 6–2r=-r | | -2/3x-3=2/3x-1/3 | | (3x+8)/2=30 | | 128-u=188 | | -8+4v=-32 | | 7t=-3+10t | | -3(x-3)=-3x | | v-2/4=5/6 | | X=23+3x | | -22=2(-1+n) | | 5x+30x=3,450 | | 8-3x=-40 |