3/2x-1=8/4x+5

Simple and best practice solution for 3/2x-1=8/4x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x-1=8/4x+5 equation:



3/2x-1=8/4x+5
We move all terms to the left:
3/2x-1-(8/4x+5)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+5)!=0
x∈R
We get rid of parentheses
3/2x-8/4x-5-1=0
We calculate fractions
12x/8x^2+(-16x)/8x^2-5-1=0
We add all the numbers together, and all the variables
12x/8x^2+(-16x)/8x^2-6=0
We multiply all the terms by the denominator
12x+(-16x)-6*8x^2=0
Wy multiply elements
-48x^2+12x+(-16x)=0
We get rid of parentheses
-48x^2+12x-16x=0
We add all the numbers together, and all the variables
-48x^2-4x=0
a = -48; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-48)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-48}=\frac{0}{-96} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-48}=\frac{8}{-96} =-1/12 $

See similar equations:

| 2(2+c)=45+5c | | 5(2a-3)=3-a+13 | | 11x-6=9x-20 | | 14r−10r=4 | | 3/10x=1,020 | | 12x=14x-14 | | 7x-3=-7x+5 | | 31/m=217 | | 8u^2-32u+97=0 | | 2y/7=(y+3)/4 | | 5m+4m-8=10 | | -57+10b=-(b-9) | | 5x-20=6x-3 | | 8+9.8x÷9=3.8x-16÷3.8x | | W+3•3w+3=w•3w+81 | | 208=2(20)+2(x) | | 9x⁴+16=40x² | | -3x-3(6x-22)=234 | | .6x+1.2=1.2x+1.65 | | -84+3x=-6x+132 | | 5^-x-10=11^-2x | | 4+14x=15x | | -5n+54=-2-8(12n-7) | | 10(X+1)=5(2x+20 | | 6x+5(6x+11)=-125 | | x÷10=65 | | 585t=5t^2+20t | | 8b+56=-7.3 | | 13.75=-2.5a | | (3y+5)=-4-8+9+77 | | -8+1/3y=-2 | | 3x+4.25=31.50 |

Equations solver categories