3/2k-9=1/8k+2

Simple and best practice solution for 3/2k-9=1/8k+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2k-9=1/8k+2 equation:



3/2k-9=1/8k+2
We move all terms to the left:
3/2k-9-(1/8k+2)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 8k+2)!=0
k∈R
We get rid of parentheses
3/2k-1/8k-2-9=0
We calculate fractions
24k/16k^2+(-2k)/16k^2-2-9=0
We add all the numbers together, and all the variables
24k/16k^2+(-2k)/16k^2-11=0
We multiply all the terms by the denominator
24k+(-2k)-11*16k^2=0
Wy multiply elements
-176k^2+24k+(-2k)=0
We get rid of parentheses
-176k^2+24k-2k=0
We add all the numbers together, and all the variables
-176k^2+22k=0
a = -176; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·(-176)·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*-176}=\frac{-44}{-352} =1/8 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*-176}=\frac{0}{-352} =0 $

See similar equations:

| 12y+40=5y+89 | | -(-2+x)+6=2(x+4)-3x+7 | | F(t)=18t-4.9t² | | w=-16/4 | | 0.5(x+14)-1=1.5(x+6) | | 3x-8.25=7x+9.25 | | 25z+(-11)=-86 | | 5²^n=125 | | 12x-30=2x+70 | | (7x+4)(5x−2)=0 | | 18+w=75 | | 15x-3=6x-48 | | 32+3y+36+y+8=180 | | 12/3+c=23/4 | | 2^(3x)=4^(x+1) | | 9k+12k=-2(k+6)-5(k-8) | | 5x+3=8×+1 | | 7(12x-6x)=67+17 | | 1296=7225+x | | 27-4x=-27 | | 96/100=86/x | | -14+14y=-12 | | 10.5c+12=46 | | 6^2=4*(x+4) | | (4x+9)=(8x+3) | | 12rr=4 | | a+4=3a+8 | | 4c+12-1.5=10.5 | | z=82-6 | | 6x+4x-18=0 | | 5x-19+25+114=180 | | (2x-3)^2-121=0 |

Equations solver categories