3/2b+b+45+90+2b-90=540

Simple and best practice solution for 3/2b+b+45+90+2b-90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2b+b+45+90+2b-90=540 equation:



3/2b+b+45+90+2b-90=540
We move all terms to the left:
3/2b+b+45+90+2b-90-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
3b+3/2b-495=0
We multiply all the terms by the denominator
3b*2b-495*2b+3=0
Wy multiply elements
6b^2-990b+3=0
a = 6; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·6·3
Δ = 980028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980028}=\sqrt{36*27223}=\sqrt{36}*\sqrt{27223}=6\sqrt{27223}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-6\sqrt{27223}}{2*6}=\frac{990-6\sqrt{27223}}{12} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+6\sqrt{27223}}{2*6}=\frac{990+6\sqrt{27223}}{12} $

See similar equations:

| 8=4+n | | -1=m-4 | | -12=-3r | | -5(5y-3)-y=-4(y-2) | | -7+9x;x=-6 | | x=-(-100±√5000) | | 3x^+6x=16 | | x/12=¾ | | -5.8-6x=16.4 | | 8y+12=6y+4 | | d+26=22+10 | | 14x-6+3x-18=180 | | 3=2h | | 8x-9=5+6x | | 17y+49=185 | | 7(1-4n)=161 | | 8x+0.3=32.3 | | -9=40/3x | | 90=-6d+6 | | 8=5r-7 | | 2/5x-9=-7+22/5 | | 9a-11=-3a+25 | | -6^-3y=8 | | −3r+10=15r−8​ | | |2y+8|=|10y| | | -4(0.3m-5)+1.6m=28.2 | | 8/7x-x+12=4 | | 3x=5(90-x) | | 2x^2+14x-129=0 | | −3x+5=2x−20−3x+5=2x−20 | | x-20=-33 | | 9x÷7-3x=15 |

Equations solver categories