3/2b+b+(b+45)+2b-90+90=540

Simple and best practice solution for 3/2b+b+(b+45)+2b-90+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2b+b+(b+45)+2b-90+90=540 equation:



3/2b+b+(b+45)+2b-90+90=540
We move all terms to the left:
3/2b+b+(b+45)+2b-90+90-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
3b+3/2b+(b+45)-540=0
We get rid of parentheses
3b+3/2b+b+45-540=0
We multiply all the terms by the denominator
3b*2b+b*2b+45*2b-540*2b+3=0
Wy multiply elements
6b^2+2b^2+90b-1080b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| -6w+8=-2(3w+4) | | 1-4k=-1 | | 7w/10-3=3w/4 | | 1250=g/25-800 | | 4x+4(x+0.5)=14.8 | | 2.4x-14.4=-5.6x+22.4 | | 1/3x=22+-x | | 35+8x=43-(-7) | | 25=x/800-1250 | | -9(x+9)-2=83 | | 3x+2(-7+4x)=1-x | | 800x+25=-1250 | | 2x-4+x+16=180 | | 2.8w-5.94=3.4w | | 13/15x-8/15x=3/5+3/20 | | 8f+2=685 | | 15-20c+35=50 | | 8e-17=15 | | -11n+20=-10+4n | | 0.53*x+0.34*(1-x)=0.48 | | 2x+4(x-20)=268 | | 800x+1250=25 | | x+3+5x-25=180 | | 0=8x-4.905x^2 | | 5d+5=2d-18 | | 5/15x=15/20 | | 395x=20=293x-60 | | 35+8x=43-7 | | 1=x-2/14 | | -2.1+x/183=8.2 | | 1250x+25=-800 | | 1000+50w+500=70 |

Equations solver categories