If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+(b+45)+90+(2b-90)=540
We move all terms to the left:
3/2b+(b+45)+90+(2b-90)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
6b^2-990b+3=0
a = 6; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·6·3
Δ = 980028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980028}=\sqrt{36*27223}=\sqrt{36}*\sqrt{27223}=6\sqrt{27223}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-6\sqrt{27223}}{2*6}=\frac{990-6\sqrt{27223}}{12} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+6\sqrt{27223}}{2*6}=\frac{990+6\sqrt{27223}}{12} $
| -27=-6p | | X^3+5x^2+5x+3=0 | | 72/(1/9)=x | | x^2-28x-240=0 | | 9x=3×^3 | | -3/5=r/24 | | 1-2n+55=6 | | 5x+7=4(x+8)-3 | | 27^3x-3=9 | | 4n+7n=76 | | 96+82+x+(x+5)+(x-9)=540 | | x+3=6x-2x | | 21x^2-28x+7=0 | | 13t+2=8 | | Z-13+z+10=360 | | -11+3b=7 | | 4x-1+3x=5x+4+105 | | r+11=-21 | | -7x+11=x+75. | | 5r-3=3r+5 | | 2x^2+3x-243=0 | | 6c-11=2c+59 | | x+2.5x=18 | | m^2+3-12m=0 | | r-11=-21 | | 29-2(3-5w)=13 | | -4y+2=-2= | | 6x^2=5x=6 | | 3(2x-14)=-3(-13+x | | 3w-4=5w-2 | | 7x-2+2x=5(x+6) | | 8(4+x)+x=8+x |