3/2(16n)=24n

Simple and best practice solution for 3/2(16n)=24n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2(16n)=24n equation:



3/2(16n)=24n
We move all terms to the left:
3/2(16n)-(24n)=0
Domain of the equation: 216n!=0
n!=0/216
n!=0
n∈R
We add all the numbers together, and all the variables
-24n+3/216n=0
We multiply all the terms by the denominator
-24n*216n+3=0
Wy multiply elements
-5184n^2+3=0
a = -5184; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-5184)·3
Δ = 62208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{62208}=\sqrt{20736*3}=\sqrt{20736}*\sqrt{3}=144\sqrt{3}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144\sqrt{3}}{2*-5184}=\frac{0-144\sqrt{3}}{-10368} =-\frac{144\sqrt{3}}{-10368} =-\frac{\sqrt{3}}{-72} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144\sqrt{3}}{2*-5184}=\frac{0+144\sqrt{3}}{-10368} =\frac{144\sqrt{3}}{-10368} =\frac{\sqrt{3}}{-72} $

See similar equations:

| (8x-1)^2=-125 | | |3x-1|=5x+5 | | -(5m+4)=4m-2(6m+2) | | 3(-8n+2)+3=129 | | 19w+3=5w+7+4w | | 5(y+3)-6=-2y-5 | | x+x(0.0625)=2000 | | 19/15=7/x | | 5-3u=-11 | | -1x-5=-3 | | $25x=$15x+$75 | | 4-(2X-7y)=2(3y+8X)= | | 2+3=2x-1 | | 8-2x+5x=7x+8 | | 4x-12+10x+30=74 | | 7x-11=2x+64 | | 6-2(5n-7)=90 | | 3x-5=2(3x-3) | | -7x+3=2x+21 | | 5=6v-6 | | 9-3(n+3)=6n | | 11-6z=-1 | | /8x-7=4x+21 | | {3}{8}=r+{2}{3} | | 2x+5x-43=90 | | 2(8x+10)=20 | | -5-n/2=9 | | 4K+40=8(8+k) | | -4(p-12)=42 | | 3(6x–15)=225 | | -3v-2-1=-9 | | 30+x=12-2x |

Equations solver categories