3/2(16n)+3=24n

Simple and best practice solution for 3/2(16n)+3=24n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2(16n)+3=24n equation:



3/2(16n)+3=24n
We move all terms to the left:
3/2(16n)+3-(24n)=0
Domain of the equation: 216n!=0
n!=0/216
n!=0
n∈R
We add all the numbers together, and all the variables
-24n+3/216n+3=0
We multiply all the terms by the denominator
-24n*216n+3*216n+3=0
Wy multiply elements
-5184n^2+648n+3=0
a = -5184; b = 648; c = +3;
Δ = b2-4ac
Δ = 6482-4·(-5184)·3
Δ = 482112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{482112}=\sqrt{5184*93}=\sqrt{5184}*\sqrt{93}=72\sqrt{93}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(648)-72\sqrt{93}}{2*-5184}=\frac{-648-72\sqrt{93}}{-10368} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(648)+72\sqrt{93}}{2*-5184}=\frac{-648+72\sqrt{93}}{-10368} $

See similar equations:

| $101.00=2h | | -4k+3.6=8.8 | | 51÷4=x | | 2x-3(41-4x)=3 | | (2m/9)+(3m/14)=1 | | 1/2a=1/6a+3 | | 8/9(y-14=-6 | | 3(x-5)=6x+10 | | -8+t=-2 | | -2(7k-3=-92 | | -2(3-7v)=-5v+13 | | 21=3v+15-6v | | 45+2x=55 | | 8(n+6)-6n=-(-6+4n) | | 30+3x=40 | | x+1/2+x+6/9=1 | | 2a-8-5a=10 | | 2n+16=56 | | 8-(3b-5)=-5+2(b+1) | | 2,380+175.75w=5,367.75 | | 0.714285714286=1/x | | 2.3x-2=2 | | 0.714285714286x=22 | | 3.25x(-0.4)=0 | | 6(7+2p)=3(p | | -7.8d=-1.56 | | 400+25x=68+25x | | 9x+22=-15 | | -9w+1=7-7w | | ⅓(m+21)+⅔m=-2 | | 4+4=-4(5x-2) | | 1,500+25h+3=3,000 |

Equations solver categories