3/10x-10=4/5x-5

Simple and best practice solution for 3/10x-10=4/5x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/10x-10=4/5x-5 equation:



3/10x-10=4/5x-5
We move all terms to the left:
3/10x-10-(4/5x-5)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 5x-5)!=0
x∈R
We get rid of parentheses
3/10x-4/5x+5-10=0
We calculate fractions
15x/50x^2+(-40x)/50x^2+5-10=0
We add all the numbers together, and all the variables
15x/50x^2+(-40x)/50x^2-5=0
We multiply all the terms by the denominator
15x+(-40x)-5*50x^2=0
Wy multiply elements
-250x^2+15x+(-40x)=0
We get rid of parentheses
-250x^2+15x-40x=0
We add all the numbers together, and all the variables
-250x^2-25x=0
a = -250; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·(-250)·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*-250}=\frac{0}{-500} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*-250}=\frac{50}{-500} =-1/10 $

See similar equations:

| 5(x+2)-9=4x-2(x+1) | | 17p=20p-15 | | -22/3=p-4/9 | | -19d=-20d+13 | | 8+4m=2 | | 4z-14=6(z+2) | | 15-g/9=5 | | 7n-8-5n=-n+10 | | 15+10x=55 | | 6x−3=21 | | 1x-23+432=2-3x+7 | | –4r−2=–6r | | 6x^2+42=-48x | | 8x^2-x=2x+2 | | 1/2x-3/5=-2/7 | | -3v=2v-10 | | b=–4b−10 | | 3x+4=2x+10-2 | | 6+6u=4u | | 1/6x-1/3=10/12+1 | | 7x-14=10x-19 | | 3k+3+6=-1+5k | | -4+5t=4t | | 3k+3+6=-1+5 | | 11(x+1+4x)=11+12x-3 | | 4x-2.9=6.4 | | 109+(8+3x)=180 | | r^2-15r=0 | | -9/5=-4/3v-5/2 | | 7m+5=2m+8 | | (y-7)^2=54 | | x-11=(-14) |

Equations solver categories