If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/(2x-3)=2/x+5
We move all terms to the left:
3/(2x-3)-(2/x+5)=0
Domain of the equation: (2x-3)!=0
We move all terms containing x to the left, all other terms to the right
2x!=3
x!=3/2
x!=1+1/2
x∈R
Domain of the equation: x+5)!=0We get rid of parentheses
x∈R
3/(2x-3)-2/x-5=0
We calculate fractions
3x/(2x^2-3x)+(-4x+6)/(2x^2-3x)-5=0
We multiply all the terms by the denominator
3x+(-4x+6)-5*(2x^2-3x)=0
We multiply parentheses
-10x^2+3x+(-4x+6)+15x=0
We get rid of parentheses
-10x^2+3x-4x+15x+6=0
We add all the numbers together, and all the variables
-10x^2+14x+6=0
a = -10; b = 14; c = +6;
Δ = b2-4ac
Δ = 142-4·(-10)·6
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{109}}{2*-10}=\frac{-14-2\sqrt{109}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{109}}{2*-10}=\frac{-14+2\sqrt{109}}{-20} $
| 95=9n-4 | | 0.5(x-2.8)+3.7=4.55 | | 6x-14=13-3x | | 3b+6=5+4b | | 7/4x-1=2/x+4 | | Y-7x+28=0 | | 2(3m-2)-(m-5)=36 | | 42=4y+14 | | h/2-(-5)=7 | | 8k+4=3k+8k | | 7-4z/9=9-4z/7 | | (X/x-3)+5=3/x-3 | | 3x+12=-2×-8 | | Y=x/2-2 | | -36=4(y-8)-6y | | 36x=36x+-6 | | -3x+(-15)=6 | | 2(3w+1)=9-1 | | 10+8z=z−4 | | X/x-3+5=3/x-3 | | 0.28a+5=-9 | | 3(x-3)=(x+3) | | 15x+14x+6=180 | | (3/4)x=7 | | 0.4t=0.5+0.3t | | 8u-18=14 | | 17g+3=11g=39 | | 5a–7=–7 | | (5x+10)=(8x-2) | | 5k–7=–7 | | 9u-12=51 | | 6x-32=-86 |