3/(10f)+24=4-1/5f

Simple and best practice solution for 3/(10f)+24=4-1/5f equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/(10f)+24=4-1/5f equation:



3/(10f)+24=4-1/5f
We move all terms to the left:
3/(10f)+24-(4-1/5f)=0
Domain of the equation: 10f!=0
f!=0/10
f!=0
f∈R
Domain of the equation: 5f)!=0
f!=0/1
f!=0
f∈R
We add all the numbers together, and all the variables
3/10f-(-1/5f+4)+24=0
We get rid of parentheses
3/10f+1/5f-4+24=0
We calculate fractions
15f/50f^2+10f/50f^2-4+24=0
We add all the numbers together, and all the variables
15f/50f^2+10f/50f^2+20=0
We multiply all the terms by the denominator
15f+10f+20*50f^2=0
We add all the numbers together, and all the variables
25f+20*50f^2=0
Wy multiply elements
1000f^2+25f=0
a = 1000; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·1000·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*1000}=\frac{-50}{2000} =-1/40 $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*1000}=\frac{0}{2000} =0 $

See similar equations:

| 12j-4=3-12j | | 3x-37=2x+1 | | x/3-27=-25 | | 11=w−(−12) | | -9x63=x | | -7x=2x-9 | | 21=112–i | | -3a+8+9a=7a-5a | | 5x+3.5=1.5 | | -7x+(x-3)^2=39 | | -4-4q=-5(-7q-7) | | -3x-18=16 | | 9w+33=12w | | 10r-9=13r+9 | | 2+u/4=-6 | | -8=n/20-9 | | 20−4(2w+1)=11w−4(11+w) | | 1/2x+1/5=5(4/5x+1) | | 5-(5+3)=-1+2(t-3) | | 3x≤19;x=-6 | | 42=10n-8 | | 3(5-1)=9+t | | 8.32z=4.12z+10.5 | | (x-3)^(2)-2(x+1)=5x+37 | | 4=(x+5)›28 | | ∣2x+4∣=3x+4 | | 4m^2-6m-40=0 | | 3x+13+5x+2=40 | | 5=1+b/2 | | -(6-x)=x+7.5 | | 2•p+10=-16 | | 7-5k=17+5k |

Equations solver categories