3.4y-6=1/4y+10

Simple and best practice solution for 3.4y-6=1/4y+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3.4y-6=1/4y+10 equation:



3.4y-6=1/4y+10
We move all terms to the left:
3.4y-6-(1/4y+10)=0
Domain of the equation: 4y+10)!=0
y∈R
We get rid of parentheses
3.4y-1/4y-10-6=0
We multiply all the terms by the denominator
(3.4y)*4y-10*4y-6*4y-1=0
We add all the numbers together, and all the variables
(+3.4y)*4y-10*4y-6*4y-1=0
We multiply parentheses
12y^2-10*4y-6*4y-1=0
Wy multiply elements
12y^2-40y-24y-1=0
We add all the numbers together, and all the variables
12y^2-64y-1=0
a = 12; b = -64; c = -1;
Δ = b2-4ac
Δ = -642-4·12·(-1)
Δ = 4144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4144}=\sqrt{16*259}=\sqrt{16}*\sqrt{259}=4\sqrt{259}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-4\sqrt{259}}{2*12}=\frac{64-4\sqrt{259}}{24} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+4\sqrt{259}}{2*12}=\frac{64+4\sqrt{259}}{24} $

See similar equations:

| 5n-14+8n=10 | | 14y-4+y+21=180 | | –5(w–2)=–10 | | 34=f/7+29 | | 4=1/3x+5 | | -1/4(x+2)+5=-1x | | 2x°=68 | | 8(8x+6)=4(4x+3) | | 1/2(20x+8)-3=4x+2(3x+1) | | A=2+6z | | 2/3(6n-42)-3=-51 | | 16=y4 | | 6(5x-3)=552 | | 27^3x+5=81^4x+1 | | 0.4-0.5x-3=-0.6 | | 70=2(3m+7)+m | | 4(x−2)+x=5x+(−8) | | (8y-43)=39 | | 3=0.2(10x-18) | | 2/3(5x-3)=4 | | 22x-33=10x+5+5 | | 3+x/2=21 | | (9x+5)+(5x+1)=180 | | 12r-10r+8r+3r=30 | | 12(¾x-3)=8x-30 | | -2(3x+5)=-12 | | 5x-66=2x-44 | | x+5/5=-50 | | 3=0.16(10x-18) | | 5x+2=2x+2=3x+4 | | |3x-24|+45=45 | | 5x+7x-25=95 |

Equations solver categories