3-2(1-x)=5+7x(x-3)

Simple and best practice solution for 3-2(1-x)=5+7x(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3-2(1-x)=5+7x(x-3) equation:



3-2(1-x)=5+7x(x-3)
We move all terms to the left:
3-2(1-x)-(5+7x(x-3))=0
We add all the numbers together, and all the variables
-2(-1x+1)-(5+7x(x-3))+3=0
We multiply parentheses
2x-(5+7x(x-3))-2+3=0
We calculate terms in parentheses: -(5+7x(x-3)), so:
5+7x(x-3)
determiningTheFunctionDomain 7x(x-3)+5
We multiply parentheses
7x^2-21x+5
Back to the equation:
-(7x^2-21x+5)
We add all the numbers together, and all the variables
2x-(7x^2-21x+5)+1=0
We get rid of parentheses
-7x^2+2x+21x-5+1=0
We add all the numbers together, and all the variables
-7x^2+23x-4=0
a = -7; b = 23; c = -4;
Δ = b2-4ac
Δ = 232-4·(-7)·(-4)
Δ = 417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{417}}{2*-7}=\frac{-23-\sqrt{417}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{417}}{2*-7}=\frac{-23+\sqrt{417}}{-14} $

See similar equations:

| 5-5×5+5=x | | 2x+7+2x-16=6x+19 | | 4(7x-5)=-244 | | d/60+1/3=d/40 | | 3x=2x*4 | | 18p-3-3p=6+14p | | 0=t^2-30t+112.5 | | -5(5+4x)=-65 | | -2=y+(-4) | | 0.7x=0.91 | | 2+6x=2-x | | 2.5x=4.7x+7.7x | | 2(3x+8)=88 | | 2/3x=3.14/3 | | x+5=13x= | | |2n|+10=-50 | | c=13.71/10 | | -(3x+7)=-35 | | 4(8+2x)=-48 | | x+2x+7=83 | | (4u-9)(7+u)=0 | | 3=y7.5 | | 12+y=3y | | 1.2-0.2x=0.9x | | 7+2(3x-6)=8-5(2x+1 | | 5.84+5.4u=3.4u-19.36 | | 7(1x-5)=-49 | | -3(-3x-2)=-4x-7 | | 5(x+4)=9x+9-4x+11 | | 11/4w=63/4 | | 9/7x-6/5=5/2x+1/2 | | (2x)(2x)=(x+10)(2x−3) |

Equations solver categories