3-(4x-6)/(6-4x)=2x-3

Simple and best practice solution for 3-(4x-6)/(6-4x)=2x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3-(4x-6)/(6-4x)=2x-3 equation:



3-(4x-6)/(6-4x)=2x-3
We move all terms to the left:
3-(4x-6)/(6-4x)-(2x-3)=0
Domain of the equation: (6-4x)!=0
We move all terms containing x to the left, all other terms to the right
-4x!=-6
x!=-6/-4
x!=1+1/2
x∈R
We add all the numbers together, and all the variables
-(4x-6)/(-4x+6)-(2x-3)+3=0
We get rid of parentheses
-(4x-6)/(-4x+6)-2x+3+3=0
We multiply all the terms by the denominator
-(4x-6)-2x*(-4x+6)+3*(-4x+6)+3*(-4x+6)=0
We multiply parentheses
8x^2-(4x-6)-12x-12x-12x+18+18=0
We get rid of parentheses
8x^2-4x-12x-12x-12x+6+18+18=0
We add all the numbers together, and all the variables
8x^2-40x+42=0
a = 8; b = -40; c = +42;
Δ = b2-4ac
Δ = -402-4·8·42
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-16}{2*8}=\frac{24}{16} =1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+16}{2*8}=\frac{56}{16} =3+1/2 $

See similar equations:

| 7u=5 | | 2(v+5)=14 v+5= | | 13x-12=5x+60 | | 4=v-31 | | X5-3=13+z | | –4k=–10k−6 | | 4=w-31 | | 16e=144 | | 5+v/12=4 | | -1+x/12=0 | | 5z–3=13+z | | 3r-3r+3r=r-1 | | 7=8h+8 | | 4(2+v)=3;v=5 | | 3x14=5 | | Y=66-3x | | 4x-2=+5-3x | | 2x-7(2)=-4 | | x−9=2(x−3)+12 | | |2x-17|=3 | | 20+.30t=10+.40t | | 1/5(k+3)=3/4 | | 10+3d+2=6+5d | | 3x-8+7x=-31 | | 3n/4+15=19 | | 6-9x+2x=-36 | | -2=-5m+10+2m | | -3(y+4)=3y+6 | | 7+t+2t=5+4t | | 5(4-2x)=20 | | 5(v+4)-8v=38 | | 4y-1+4(2y+1)=-3(y+1) |

Equations solver categories