3+x-5/5=2+1/5x

Simple and best practice solution for 3+x-5/5=2+1/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+x-5/5=2+1/5x equation:



3+x-5/5=2+1/5x
We move all terms to the left:
3+x-5/5-(2+1/5x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x-(1/5x+2)+3-5/5=0
We add all the numbers together, and all the variables
x-(1/5x+2)+2=0
We get rid of parentheses
x-1/5x-2+2=0
We multiply all the terms by the denominator
x*5x-2*5x+2*5x-1=0
Wy multiply elements
5x^2-10x+10x-1=0
We add all the numbers together, and all the variables
5x^2-1=0
a = 5; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·5·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*5}=\frac{0-2\sqrt{5}}{10} =-\frac{2\sqrt{5}}{10} =-\frac{\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*5}=\frac{0+2\sqrt{5}}{10} =\frac{2\sqrt{5}}{10} =\frac{\sqrt{5}}{5} $

See similar equations:

| 7x-5=5x=23 | | m(m-1)+5m+13=0 | | 10x^2-32x-255=0 | | 3x+35=12x-1 | | 18/n=6/10 | | 18/n=16/28 | | -3(2x–8)=-12 | | 5(x-4)=x-10 | | 3(f+6)=+2(f−4) | | 2x+2+2(x-1)^1/2=16 | | 2x+2+2√x-1=16 | | -2x2+2x=16 | | -2x²+2x=16 | | x+2=30/x+1 | | 9⋅(7x−8)−7⋅(9x+8)=−128. | | 2h2-5h-12=2 | | (6x+10)+(2x+10)=180° | | x³+x²-12x-12=0 | | 180=15x+5 | | 3a-a=6a | | 4-2-5x=-58 | | 4-9x=-59 | | (6²)/(4^n-2)=9 | | 12-x=(2x-3) | | (C=0,7)r=1 | | X/5=45x= | | 6y+4y=-8 | | 5^(3x-18)-1=0 | | 5^3x-18-1=0 | | x+5x=7x | | (2y-3)(4y²-12y+9)= | | 30x=1,000,000 |

Equations solver categories