3+.25x=1/8x-2

Simple and best practice solution for 3+.25x=1/8x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+.25x=1/8x-2 equation:



3+.25x=1/8x-2
We move all terms to the left:
3+.25x-(1/8x-2)=0
Domain of the equation: 8x-2)!=0
x∈R
We get rid of parentheses
.25x-1/8x+2+3=0
We multiply all the terms by the denominator
(.25x)*8x+2*8x+3*8x-1=0
We add all the numbers together, and all the variables
(+.25x)*8x+2*8x+3*8x-1=0
We multiply parentheses
8x^2+2*8x+3*8x-1=0
Wy multiply elements
8x^2+16x+24x-1=0
We add all the numbers together, and all the variables
8x^2+40x-1=0
a = 8; b = 40; c = -1;
Δ = b2-4ac
Δ = 402-4·8·(-1)
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{102}}{2*8}=\frac{-40-4\sqrt{102}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{102}}{2*8}=\frac{-40+4\sqrt{102}}{16} $

See similar equations:

| 5/4x+7=-8 | | 2x-3+4x(3x+2)=9x-1 | | 5x+20=4x-11 | | 20=80x-16x^2 | | 3+1/4x=1/8x-2 | | -45+6x+4x=65 | | 21-x+5=32x-1 | | 1.1y=7.04 | | (5x+4)(6x-9)=83 | | 115x+500=2,685 | | 56.52=π×1.5^2×h | | -57=3u-21 | | 2-r=0.1-2.4 | | 8x+3(8x-1)=4x-15 | | 16=4(x+11) | | 7y+5-3=-31 | | 21=1/8n | | 3x+5=2-6-x-2x | | 8=6y+14 | | 9x+19=2x+33 | | 3/4x80-2=180 | | 8=6y+4 | | F=x+40° | | 2x=20=4/7x | | 3x-5=-21-7x | | -6x-6x=10x+10 | | 7k-k=6k | | 80/36=90/x | | 80/36=90/x} | | 17x=23=40 | | 3(3k-6)=108 | | 2/7x-7=-3 |

Equations solver categories