If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=72
We move all terms to the left:
3x^2-(72)=0
a = 3; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·3·(-72)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*3}=\frac{0-12\sqrt{6}}{6} =-\frac{12\sqrt{6}}{6} =-2\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*3}=\frac{0+12\sqrt{6}}{6} =\frac{12\sqrt{6}}{6} =2\sqrt{6} $
| 5p-8(8p+7)=416 | | Y=21x-51+1= | | 9/3d+35=5/6d=46 | | 135=h-444 | | 31+2s+s-13=180 | | (u-1)^2=(u+1)(u+3)+5 | | 10j=–6+4j | | 52+n=68 | | 2b+68+b+4=180 | | 594=27q | | 6(3+6n)=90 | | x-5=-(2x+10)/2 | | 5(n-6)=4n-28 | | 34+n=43 | | 2a+5a-6=2+7a | | 8(b+1)+4=3(2b-8 | | -6(x-12)=126 | | x-5=-(2x+10) | | 8p+29=p+15p= | | 3x+8+2x-5=53 | | X-4x/7=24 | | 32+(a-12)+31=180 | | 5=x/12+5 | | (2w-1)(5)+w+2=2w | | 10-4x=-3x-3x= | | 2(x-14)=-32 | | (3x-2)+(8x-16)=180 | | 32+a-12+31=180 | | 5y+18=8(18)-16 | | {2w-1}{5}+w+2=2w | | 2b+3=4b-3 | | 34x-8+58x=3 |