If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2=14
We move all terms to the left:
3t^2-(14)=0
a = 3; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·3·(-14)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*3}=\frac{0-2\sqrt{42}}{6} =-\frac{2\sqrt{42}}{6} =-\frac{\sqrt{42}}{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*3}=\frac{0+2\sqrt{42}}{6} =\frac{2\sqrt{42}}{6} =\frac{\sqrt{42}}{3} $
| -85=5(1-6b | | 9(x-4)-1=80 | | 4/3w-3=-1/2w-2/3 | | 1/2w+7=3 | | D/5=3;d= | | 3(x+1)-8=13 | | c+12=27 | | 8f=10f−6 | | 66-y=272 | | 2x+5=10x-59 | | 0.02x=7 | | 31=-w+239 | | 14u+48+48=180 | | 3z-15=2z-2 | | 17=(-32)+g | | u+(–5)=–15 | | 0.05x=9 | | 277=222-u | | 7=-6x+19/7 | | -(-3x+2)=10 | | 10x=5x-150 | | 2(w-7)=-30 | | x−18=43 | | -3=-(x-7) | | 5x+3=10x−27 | | 3t+3t+66=180 | | 6x+2=-5(x+1) | | 5p+14=8p-4 | | /17=(-32)+g | | 5b−6−2b+8=8 | | 1/3+1/2x=5/12 | | 10=w/3+1 |