3(y+2)+4=5(y-1)y

Simple and best practice solution for 3(y+2)+4=5(y-1)y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(y+2)+4=5(y-1)y equation:



3(y+2)+4=5(y-1)y
We move all terms to the left:
3(y+2)+4-(5(y-1)y)=0
We multiply parentheses
3y-(5(y-1)y)+6+4=0
We calculate terms in parentheses: -(5(y-1)y), so:
5(y-1)y
We multiply parentheses
5y^2-5y
Back to the equation:
-(5y^2-5y)
We add all the numbers together, and all the variables
3y-(5y^2-5y)+10=0
We get rid of parentheses
-5y^2+3y+5y+10=0
We add all the numbers together, and all the variables
-5y^2+8y+10=0
a = -5; b = 8; c = +10;
Δ = b2-4ac
Δ = 82-4·(-5)·10
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{66}}{2*-5}=\frac{-8-2\sqrt{66}}{-10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{66}}{2*-5}=\frac{-8+2\sqrt{66}}{-10} $

See similar equations:

| 16r+4-11r=18 | | 5a+3+52=90 | | 2b+84+50=180 | | 30x-12x=6x+4 | | 4-2(x+3)+x=3 | | 3.2x+13=29 | | 227x+1=57 | | 14z-2z+4z-13z-z=14 | | -3-8x=131 | | 9y=54y= | | k/3+5=25 | | v=5-3 | | 3(−2c−1)+1=7 | | -39=-x/7 | | 10c=16 | | –3d+3=–2d | | 5r–7=23 | | 14z+70+54=180 | | 10=5x-5(x-5) | | 3z-3z+4z-z=12 | | -8c+20=4(2c-5) | | 2+5x+6=x-(9-2x) | | 2.5(3j-13)=20 | | x‒12=7. | | .6x-5=1.1x+7 | | w=1-7 | | 9x+1=81+x | | 800-40m=1,200-90m | | −2p+23=11 | | -10.6=u/3-3.1 | | x+9.7=16.9 | | 3a+2a+30=180 |

Equations solver categories