3(x2-2)=6(x+4)

Simple and best practice solution for 3(x2-2)=6(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x2-2)=6(x+4) equation:



3(x2-2)=6(x+4)
We move all terms to the left:
3(x2-2)-(6(x+4))=0
We add all the numbers together, and all the variables
3(+x^2-2)-(6(x+4))=0
We multiply parentheses
3x^2-(6(x+4))-6=0
We calculate terms in parentheses: -(6(x+4)), so:
6(x+4)
We multiply parentheses
6x+24
Back to the equation:
-(6x+24)
We get rid of parentheses
3x^2-6x-24-6=0
We add all the numbers together, and all the variables
3x^2-6x-30=0
a = 3; b = -6; c = -30;
Δ = b2-4ac
Δ = -62-4·3·(-30)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{11}}{2*3}=\frac{6-6\sqrt{11}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{11}}{2*3}=\frac{6+6\sqrt{11}}{6} $

See similar equations:

| 5x+3)+(2x+11)+90=180 | | 9b=10b-8 | | 0.69x^2+5.79x-6.2=0 | | (5x+3)+(12x+2)+90=180 | | 3(2-12x)+3(6x+6)=6 | | 0.69x^2-5.79x-6.2=0 | | -8d/5=2 | | -4(-a-1)=24 | | 3.5x-13+27=3.5(x+4) | | 13.5+a=27 | | 1/3(4a+)=1/2a | | -4=q-10 | | 18x+9=9+50 | | 16x=-1 | | 2a+3a-a=0-1 | | 12f=132 | | 3x-15-14=2x-14+3 | | 169=-w+224 | | 273=198-x | | 2x-x=-x-18 | | -w+75=174 | | 4-9p+10p=-2 | | 6x+3x-4x=21+4 | | (6.1x)/9.3=(8.7x-4.5)/7.22 | | -x^2+120x-3600=0 | | -v+172=18 | | f=66 | | 4z-8=8 | | 16=4+6p | | 2(4u-50=70 | | 7+2x/3=15 | | 6x-5-29=4 |

Equations solver categories