3(x2+4)+5x=2x2+6(x+3)

Simple and best practice solution for 3(x2+4)+5x=2x2+6(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x2+4)+5x=2x2+6(x+3) equation:



3(x2+4)+5x=2x^2+6(x+3)
We move all terms to the left:
3(x2+4)+5x-(2x^2+6(x+3))=0
We add all the numbers together, and all the variables
3(+x^2+4)+5x-(2x^2+6(x+3))=0
We multiply parentheses
3x^2+5x-(2x^2+6(x+3))+12=0
We calculate terms in parentheses: -(2x^2+6(x+3)), so:
2x^2+6(x+3)
We multiply parentheses
2x^2+6x+18
Back to the equation:
-(2x^2+6x+18)
We get rid of parentheses
3x^2-2x^2+5x-6x-18+12=0
We add all the numbers together, and all the variables
x^2-1x-6=0
a = 1; b = -1; c = -6;
Δ = b2-4ac
Δ = -12-4·1·(-6)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-5}{2*1}=\frac{-4}{2} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+5}{2*1}=\frac{6}{2} =3 $

See similar equations:

| 15n-2=11 | | 1/6x+4/3=20 | | y/2=y/3=1 | | X+9y=167 | | 3t-(2t+8)=9 | | 9-2k-3)=k | | (3/4)*x-(-16)=28 | | -5-3(1-8x)=-25 | | 32=s-19 | | Y=21-6x-13 | | W(x)=21-6x-13 | | (4b+5)-2b=5+2b | | 23-2c=43 | | 1×c=c | | 4(n-9)=7n+6 | | 7n+8=27 | | x+8/x+4=2x+1/x+8 | | Y•=7y | | 0.8x=4.6 | | 10x(x-2)=20 | | 5/7m-2-6/7m=11 | | f-3.3(f+6.7)=53.85 | | 2(5x+1)-2x=2x=2-2(3x+1) | | (3/5)(n+25=3n | | 5y/2=14/15 | | 5+(1-n)3=51 | | 5+(1-n)=51 | | 5y-2+y-6=9y+10-6y=13 | | 4d-18=22 | | -3x-8x+x=50 | | 2p=p+23 | | 1/2x+1/5=5 |

Equations solver categories