3(x-a)(x-5)+33(x+a)(x-5)=6(x+a)(x-a)

Simple and best practice solution for 3(x-a)(x-5)+33(x+a)(x-5)=6(x+a)(x-a) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-a)(x-5)+33(x+a)(x-5)=6(x+a)(x-a) equation:


Simplifying
3(x + -1a)(x + -5) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)

Reorder the terms:
3(-1a + x)(x + -5) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)

Reorder the terms:
3(-1a + x)(-5 + x) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)

Multiply (-1a + x) * (-5 + x)
3(-1a * (-5 + x) + x(-5 + x)) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)
3((-5 * -1a + x * -1a) + x(-5 + x)) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)
3((5a + -1ax) + x(-5 + x)) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)
3(5a + -1ax + (-5 * x + x * x)) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)
3(5a + -1ax + (-5x + x2)) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)
3(5a + -1ax + -5x + x2) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)
(5a * 3 + -1ax * 3 + -5x * 3 + x2 * 3) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)
(15a + -3ax + -15x + 3x2) + 33(x + a)(x + -5) = 6(x + a)(x + -1a)

Reorder the terms:
15a + -3ax + -15x + 3x2 + 33(a + x)(x + -5) = 6(x + a)(x + -1a)

Reorder the terms:
15a + -3ax + -15x + 3x2 + 33(a + x)(-5 + x) = 6(x + a)(x + -1a)

Multiply (a + x) * (-5 + x)
15a + -3ax + -15x + 3x2 + 33(a(-5 + x) + x(-5 + x)) = 6(x + a)(x + -1a)
15a + -3ax + -15x + 3x2 + 33((-5 * a + x * a) + x(-5 + x)) = 6(x + a)(x + -1a)
15a + -3ax + -15x + 3x2 + 33((-5a + ax) + x(-5 + x)) = 6(x + a)(x + -1a)
15a + -3ax + -15x + 3x2 + 33(-5a + ax + (-5 * x + x * x)) = 6(x + a)(x + -1a)
15a + -3ax + -15x + 3x2 + 33(-5a + ax + (-5x + x2)) = 6(x + a)(x + -1a)
15a + -3ax + -15x + 3x2 + 33(-5a + ax + -5x + x2) = 6(x + a)(x + -1a)
15a + -3ax + -15x + 3x2 + (-5a * 33 + ax * 33 + -5x * 33 + x2 * 33) = 6(x + a)(x + -1a)
15a + -3ax + -15x + 3x2 + (-165a + 33ax + -165x + 33x2) = 6(x + a)(x + -1a)

Reorder the terms:
15a + -165a + -3ax + 33ax + -15x + -165x + 3x2 + 33x2 = 6(x + a)(x + -1a)

Combine like terms: 15a + -165a = -150a
-150a + -3ax + 33ax + -15x + -165x + 3x2 + 33x2 = 6(x + a)(x + -1a)

Combine like terms: -3ax + 33ax = 30ax
-150a + 30ax + -15x + -165x + 3x2 + 33x2 = 6(x + a)(x + -1a)

Combine like terms: -15x + -165x = -180x
-150a + 30ax + -180x + 3x2 + 33x2 = 6(x + a)(x + -1a)

Combine like terms: 3x2 + 33x2 = 36x2
-150a + 30ax + -180x + 36x2 = 6(x + a)(x + -1a)

Reorder the terms:
-150a + 30ax + -180x + 36x2 = 6(a + x)(x + -1a)

Reorder the terms:
-150a + 30ax + -180x + 36x2 = 6(a + x)(-1a + x)

Multiply (a + x) * (-1a + x)
-150a + 30ax + -180x + 36x2 = 6(a(-1a + x) + x(-1a + x))
-150a + 30ax + -180x + 36x2 = 6((-1a * a + x * a) + x(-1a + x))

Reorder the terms:
-150a + 30ax + -180x + 36x2 = 6((ax + -1a2) + x(-1a + x))
-150a + 30ax + -180x + 36x2 = 6((ax + -1a2) + x(-1a + x))
-150a + 30ax + -180x + 36x2 = 6(ax + -1a2 + (-1a * x + x * x))
-150a + 30ax + -180x + 36x2 = 6(ax + -1a2 + (-1ax + x2))

Reorder the terms:
-150a + 30ax + -180x + 36x2 = 6(ax + -1ax + -1a2 + x2)

Combine like terms: ax + -1ax = 0
-150a + 30ax + -180x + 36x2 = 6(0 + -1a2 + x2)
-150a + 30ax + -180x + 36x2 = 6(-1a2 + x2)
-150a + 30ax + -180x + 36x2 = (-1a2 * 6 + x2 * 6)
-150a + 30ax + -180x + 36x2 = (-6a2 + 6x2)

Solving
-150a + 30ax + -180x + 36x2 = -6a2 + 6x2

Solving for variable 'a'.

Reorder the terms:
-150a + 30ax + 6a2 + -180x + 36x2 + -6x2 = -6a2 + 6x2 + 6a2 + -6x2

Combine like terms: 36x2 + -6x2 = 30x2
-150a + 30ax + 6a2 + -180x + 30x2 = -6a2 + 6x2 + 6a2 + -6x2

Reorder the terms:
-150a + 30ax + 6a2 + -180x + 30x2 = -6a2 + 6a2 + 6x2 + -6x2

Combine like terms: -6a2 + 6a2 = 0
-150a + 30ax + 6a2 + -180x + 30x2 = 0 + 6x2 + -6x2
-150a + 30ax + 6a2 + -180x + 30x2 = 6x2 + -6x2

Combine like terms: 6x2 + -6x2 = 0
-150a + 30ax + 6a2 + -180x + 30x2 = 0

Factor out the Greatest Common Factor (GCF), '6'.
6(-25a + 5ax + a2 + -30x + 5x2) = 0

Ignore the factor 6.

Subproblem 1

Set the factor '(-25a + 5ax + a2 + -30x + 5x2)' equal to zero and attempt to solve: Simplifying -25a + 5ax + a2 + -30x + 5x2 = 0 Solving -25a + 5ax + a2 + -30x + 5x2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 5-p=12 | | 3x=8x+64 | | -42+x=-18 | | 9(x-1)-1=6x+3(-2+x) | | 2x^3-x^2-12-18x+9=0 | | x^2+26x-224=0 | | B+23=51 | | X-4x+144=0 | | Log(3x-10)=log(4x+2) | | -4(-10-3x)=52 | | (a^4/b^2)^3 | | 84-14=2x | | (15x^5y^3)(20xy^4)= | | 2x^4+9x^2+6=0 | | 50+5x=25+6x | | x/(-7)=13 | | (y-1)+(y+5)+(y+6)=34 | | (8-u)(4u-9)=0 | | -4(x+9)-44=3-55 | | 11x=8z-6 | | (16x^2/4y^5)^3 | | 8x-3(4x-7)-5=5(-6x+3)-12 | | 11x-200=9x-50 | | 3x+3-1x=11 | | 3x+12=14x-21 | | 2x-(4+2x)+3=2x+2 | | an=4-1 | | 12x+30+8x-6=11 | | 11x-3=96 | | F(x)=x^3-3x^2-6x+8 | | (5x/y^6)^3 | | (Y-1)+(y+6)+(y+5)=34 |

Equations solver categories