3(x-6)8x=-2+5(2x+1)

Simple and best practice solution for 3(x-6)8x=-2+5(2x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-6)8x=-2+5(2x+1) equation:



3(x-6)8x=-2+5(2x+1)
We move all terms to the left:
3(x-6)8x-(-2+5(2x+1))=0
We multiply parentheses
24x^2-144x-(-2+5(2x+1))=0
We calculate terms in parentheses: -(-2+5(2x+1)), so:
-2+5(2x+1)
determiningTheFunctionDomain 5(2x+1)-2
We multiply parentheses
10x+5-2
We add all the numbers together, and all the variables
10x+3
Back to the equation:
-(10x+3)
We get rid of parentheses
24x^2-144x-10x-3=0
We add all the numbers together, and all the variables
24x^2-154x-3=0
a = 24; b = -154; c = -3;
Δ = b2-4ac
Δ = -1542-4·24·(-3)
Δ = 24004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24004}=\sqrt{4*6001}=\sqrt{4}*\sqrt{6001}=2\sqrt{6001}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-154)-2\sqrt{6001}}{2*24}=\frac{154-2\sqrt{6001}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-154)+2\sqrt{6001}}{2*24}=\frac{154+2\sqrt{6001}}{48} $

See similar equations:

| 15+0.25m=25+0.25m | | (2/3-3/4)z=9 | | -11b+12=56 | | 6.2-10.4=9.6+8.2x | | 2(y-3)=4; | | 12=-2x+5 | | 45+5m=17+9m | | (3/5)c=-12 | | 4.7=r/5 | | 1.25x-2.7=3.5 | | 3x-5x+7=45 | | -7z=-11-8z | | 12=-6-d | | -197=-10x-77 | | 13.4=3y-24.1 | | 7v-1+2(2v+7)=-3(v+1) | | 400+100=x2 | | 7v-1+2(2v+7)=-3(v+1 | | 5−6k=- | | X-192x-149=0 | | 4x+8=2x−12 | | 4x+5+∠5=180 | | 7x+82=500 | | -3(w-7)=-5w+15 | | −30−6r=-36 | | 2x-6(3-x)=2(5x-1)-10 | | s+17/6=16 | | w+-20w=19 | | x/30=30/10 | | 1.5x=1.25x+1 | | x/7+12=6 | | 8q+2=18 |

Equations solver categories