3(x-3)(x-7)=4(x+3)

Simple and best practice solution for 3(x-3)(x-7)=4(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-3)(x-7)=4(x+3) equation:



3(x-3)(x-7)=4(x+3)
We move all terms to the left:
3(x-3)(x-7)-(4(x+3))=0
We multiply parentheses ..
3(+x^2-7x-3x+21)-(4(x+3))=0
We calculate terms in parentheses: -(4(x+3)), so:
4(x+3)
We multiply parentheses
4x+12
Back to the equation:
-(4x+12)
We multiply parentheses
3x^2-21x-9x-(4x+12)+63=0
We get rid of parentheses
3x^2-21x-9x-4x-12+63=0
We add all the numbers together, and all the variables
3x^2-34x+51=0
a = 3; b = -34; c = +51;
Δ = b2-4ac
Δ = -342-4·3·51
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-4\sqrt{34}}{2*3}=\frac{34-4\sqrt{34}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+4\sqrt{34}}{2*3}=\frac{34+4\sqrt{34}}{6} $

See similar equations:

| (x+4)·(2x-3)=0 | | 2t-6+t=180 | | 5/6=(w-5)/4 | | 5(3w+4)=8 | | 31+8z=4(6-7) | | 97=4r+9 | | 2c+11=c+15 | | x²+2x=40 | | 10=6+4v | | g/2=18=22 | | 3s-98+3s-28=180 | | 1/3x^2=10=7 | | 10/n=20-n | | -(3+x)=2x+6 | | 2b-20=22 | | 3w-54=w+54 | | -2+2/x=-14 | | -10(s+3)=-115 | | 2z-36=3z-60 | | 11=4u-5 | | .33x+58000=x | | 75-3.5y=4y=4y+6 | | 36=108-3x/2 | | 2p-60=p-29 | | 12m+11-2m=10m-5+16 | | 104.24=(530/m) | | -5=c/10-2 | | 3c=9c-78 | | 4y+5=20-y | | 4(x-1)+2x=2x=6x+5 | | 2x-76=x-23 | | m+2-2(m-4)=0 |

Equations solver categories