If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x-2)-2(x-3)=5x(x-2)-(x-1)
We move all terms to the left:
3(x-2)-2(x-3)-(5x(x-2)-(x-1))=0
We multiply parentheses
3x-2x-(5x(x-2)-(x-1))-6+6=0
We calculate terms in parentheses: -(5x(x-2)-(x-1)), so:We add all the numbers together, and all the variables
5x(x-2)-(x-1)
We multiply parentheses
5x^2-10x-(x-1)
We get rid of parentheses
5x^2-10x-x+1
We add all the numbers together, and all the variables
5x^2-11x+1
Back to the equation:
-(5x^2-11x+1)
x-(5x^2-11x+1)=0
We get rid of parentheses
-5x^2+x+11x-1=0
We add all the numbers together, and all the variables
-5x^2+12x-1=0
a = -5; b = 12; c = -1;
Δ = b2-4ac
Δ = 122-4·(-5)·(-1)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{31}}{2*-5}=\frac{-12-2\sqrt{31}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{31}}{2*-5}=\frac{-12+2\sqrt{31}}{-10} $
| 6j-5j=4 | | 4z/7+6=-7 | | 3x-7-x+9=5 | | –7+5k=4k | | y=20+22 | | 8^5=2^(2m+3) | | 3x-2=19° | | 2x(x-3)+5(x-1)=-4 | | 6x²-4x=152 | | –7h−4−10=–8h−10 | | 3h+2=7h+10 | | 6x²-4x-152=0 | | -8+3s=4s | | 3x2-2600=4900 | | 10-4p=10+3p | | -5h-10=-4h | | y=5=98 | | y=4.5/2 | | x(^2)-x-30=0 | | y=4.5/9 | | 4(-3-x)-14(x+2)+15=-15-8x | | 4c=-9+c | | 15-3=6x | | 8x+8=5x-4 | | 8+6b=8b | | -6y=-7-5y | | (6x-1)+(4x=6 | | 6(6x+7)-3x+5=-49(-1+x)+80x | | 2x(x-1)=4x(2x-3) | | 5x+4-2x=-8-3x+12+6x | | -15h+210=60 | | 2/3(4x-11)=3/4(x+3) |