If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3(x + -2)(x + 2) + -5x = 0 Reorder the terms: 3(-2 + x)(x + 2) + -5x = 0 Reorder the terms: 3(-2 + x)(2 + x) + -5x = 0 Multiply (-2 + x) * (2 + x) 3(-2(2 + x) + x(2 + x)) + -5x = 0 3((2 * -2 + x * -2) + x(2 + x)) + -5x = 0 3((-4 + -2x) + x(2 + x)) + -5x = 0 3(-4 + -2x + (2 * x + x * x)) + -5x = 0 3(-4 + -2x + (2x + x2)) + -5x = 0 Combine like terms: -2x + 2x = 0 3(-4 + 0 + x2) + -5x = 0 3(-4 + x2) + -5x = 0 (-4 * 3 + x2 * 3) + -5x = 0 (-12 + 3x2) + -5x = 0 Reorder the terms: -12 + -5x + 3x2 = 0 Solving -12 + -5x + 3x2 = 0 Solving for variable 'x'. Factor a trinomial. (-4 + -3x)(3 + -1x) = 0Subproblem 1
Set the factor '(-4 + -3x)' equal to zero and attempt to solve: Simplifying -4 + -3x = 0 Solving -4 + -3x = 0 Move all terms containing x to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + -3x = 0 + 4 Combine like terms: -4 + 4 = 0 0 + -3x = 0 + 4 -3x = 0 + 4 Combine like terms: 0 + 4 = 4 -3x = 4 Divide each side by '-3'. x = -1.333333333 Simplifying x = -1.333333333Subproblem 2
Set the factor '(3 + -1x)' equal to zero and attempt to solve: Simplifying 3 + -1x = 0 Solving 3 + -1x = 0 Move all terms containing x to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + -3 + -1x = 0 + -3 Combine like terms: 3 + -3 = 0 0 + -1x = 0 + -3 -1x = 0 + -3 Combine like terms: 0 + -3 = -3 -1x = -3 Divide each side by '-1'. x = 3 Simplifying x = 3Solution
x = {-1.333333333, 3}
| 7+83+x+y=180 | | 5x-7=23 | | -6=29-4 | | x^2-5x-11=-7x-3 | | -2x-8+6=3 | | 9x-15=3x+9 | | Ax-bx-3=-1 | | X-3.3=4.6 | | 18y-7=5y+19 | | 17-2x=x+4 | | (-99-1)-(-1+99)= | | 7x+1.5=5 | | 6(n+4)+6=-18 | | 31y=51 | | -14+4x=10x-16 | | x^2+3-9=9 | | -b+4b=8b-6 | | -x=9 | | 10f-25=15 | | 5n-16=-10+8n | | x^2+6x-6=1 | | 6=w+2 | | 4p^2+p=140 | | 2(18-9y)=-72 | | v+5.28=7.85 | | (x+3)(x^2+7x+11)= | | |h-8|=|h+10| | | -7x+3+10x-6= | | 3(2x+1)-5=94 | | 24=3(x-1) | | 31=-51q | | 8x-19=3x+4 |