3(x-1)-6(x+1)=(x+1)(x+3)

Simple and best practice solution for 3(x-1)-6(x+1)=(x+1)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-1)-6(x+1)=(x+1)(x+3) equation:



3(x-1)-6(x+1)=(x+1)(x+3)
We move all terms to the left:
3(x-1)-6(x+1)-((x+1)(x+3))=0
We multiply parentheses
3x-6x-((x+1)(x+3))-3-6=0
We multiply parentheses ..
-((+x^2+3x+x+3))+3x-6x-3-6=0
We calculate terms in parentheses: -((+x^2+3x+x+3)), so:
(+x^2+3x+x+3)
We get rid of parentheses
x^2+3x+x+3
We add all the numbers together, and all the variables
x^2+4x+3
Back to the equation:
-(x^2+4x+3)
We add all the numbers together, and all the variables
-3x-(x^2+4x+3)-9=0
We get rid of parentheses
-x^2-3x-4x-3-9=0
We add all the numbers together, and all the variables
-1x^2-7x-12=0
a = -1; b = -7; c = -12;
Δ = b2-4ac
Δ = -72-4·(-1)·(-12)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-1}{2*-1}=\frac{6}{-2} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+1}{2*-1}=\frac{8}{-2} =-4 $

See similar equations:

| (x+17)^3/2=512 | | 5+x−3x=7−2x | | 3x+21+x=0.875 | | 3x+2x+4x-x-3+9=9+5-x+13 | | -408=8(8n+5)-8n | | x=(T+2)*(14+3T) | | 9(1/3x-2/3)=4x | | x=(T+2)x(14+3T) | | 24f=48 | | -3x+2x=-25 | | X-(x*0.10)=1307.70 | | (1/3x-2/3)=4x | | 6(f-1)=2(f+5) | | 3(2c-5)=43 | | 10x-4(3x-5)=4(x-7) | | 33=8+1/4b | | (k+9)/2=-4 | | 43-8(5-p)+3(p+3)=-10 | | 36=8x+28 | | 3x+2(x+2=-1 | | 67=x-3 | | 262=6w-8 | | X+4x-7=-2x+7x-7 | | w+10=53 | | -33+10b=-22 | | 4x-5=x+5+3x | | 4c+6=54 | | w−71/5=4 | | 3x+12=6x15=180 | | -2y+10y=64 | | 9y-3-7y+2=0 | | 2x-3=2(x+4)/3 |

Equations solver categories