If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x+4)=x+x(x+2)
We move all terms to the left:
3(x+4)-(x+x(x+2))=0
We multiply parentheses
3x-(x+x(x+2))+12=0
We calculate terms in parentheses: -(x+x(x+2)), so:We get rid of parentheses
x+x(x+2)
We multiply parentheses
x^2+x+2x
We add all the numbers together, and all the variables
x^2+3x
Back to the equation:
-(x^2+3x)
-x^2+3x-3x+12=0
We add all the numbers together, and all the variables
-1x^2+12=0
a = -1; b = 0; c = +12;
Δ = b2-4ac
Δ = 02-4·(-1)·12
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-1}=\frac{0-4\sqrt{3}}{-2} =-\frac{4\sqrt{3}}{-2} =-\frac{2\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-1}=\frac{0+4\sqrt{3}}{-2} =\frac{4\sqrt{3}}{-2} =\frac{2\sqrt{3}}{-1} $
| 2x=(x+2)+18 | | 4x+4/8=3-x | | 8k+5k=12 | | A=72a+7 | | 5x-23=7x-13 | | 1/5=12/n | | 2/n=8/28 | | 8x-9+14x=22x-9 | | -37x+12=3X-48 | | 32-8x=68-2x | | F=d/3+2 | | -5n+7=2n-42 | | 6x-11=9-4x | | X/11=-14/x | | 2y+7=5y-14 | | 12=8+a | | x2(x+5)(x-5)=0 | | 4x+8=2(x-10) | | 16p2-60p+70=12p-11 | | 21.5+.15x=x | | 314=3,14r^2. | | 0,4=x/200 | | −43x^2=−44032 | | x-1.8/3=6 | | x-1.8/3=6 | | 2e+5/3=5 | | 5x+10=-98-7 | | x/1+(64/x)=34 | | (2x+8)X3=(x-2)X10 | | (3x+6)(2x-5)=5 | | 5*3^x=19x+7 | | 179-18(x-10)=-158-3(x-17) |