3(x+2)(x-5)=2x-8

Simple and best practice solution for 3(x+2)(x-5)=2x-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+2)(x-5)=2x-8 equation:


Simplifying
3(x + 2)(x + -5) = 2x + -8

Reorder the terms:
3(2 + x)(x + -5) = 2x + -8

Reorder the terms:
3(2 + x)(-5 + x) = 2x + -8

Multiply (2 + x) * (-5 + x)
3(2(-5 + x) + x(-5 + x)) = 2x + -8
3((-5 * 2 + x * 2) + x(-5 + x)) = 2x + -8
3((-10 + 2x) + x(-5 + x)) = 2x + -8
3(-10 + 2x + (-5 * x + x * x)) = 2x + -8
3(-10 + 2x + (-5x + x2)) = 2x + -8

Combine like terms: 2x + -5x = -3x
3(-10 + -3x + x2) = 2x + -8
(-10 * 3 + -3x * 3 + x2 * 3) = 2x + -8
(-30 + -9x + 3x2) = 2x + -8

Reorder the terms:
-30 + -9x + 3x2 = -8 + 2x

Solving
-30 + -9x + 3x2 = -8 + 2x

Solving for variable 'x'.

Reorder the terms:
-30 + 8 + -9x + -2x + 3x2 = -8 + 2x + 8 + -2x

Combine like terms: -30 + 8 = -22
-22 + -9x + -2x + 3x2 = -8 + 2x + 8 + -2x

Combine like terms: -9x + -2x = -11x
-22 + -11x + 3x2 = -8 + 2x + 8 + -2x

Reorder the terms:
-22 + -11x + 3x2 = -8 + 8 + 2x + -2x

Combine like terms: -8 + 8 = 0
-22 + -11x + 3x2 = 0 + 2x + -2x
-22 + -11x + 3x2 = 2x + -2x

Combine like terms: 2x + -2x = 0
-22 + -11x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-7.333333333 + -3.666666667x + x2 = 0

Move the constant term to the right:

Add '7.333333333' to each side of the equation.
-7.333333333 + -3.666666667x + 7.333333333 + x2 = 0 + 7.333333333

Reorder the terms:
-7.333333333 + 7.333333333 + -3.666666667x + x2 = 0 + 7.333333333

Combine like terms: -7.333333333 + 7.333333333 = 0.000000000
0.000000000 + -3.666666667x + x2 = 0 + 7.333333333
-3.666666667x + x2 = 0 + 7.333333333

Combine like terms: 0 + 7.333333333 = 7.333333333
-3.666666667x + x2 = 7.333333333

The x term is -3.666666667x.  Take half its coefficient (-1.833333334).
Square it (3.361111114) and add it to both sides.

Add '3.361111114' to each side of the equation.
-3.666666667x + 3.361111114 + x2 = 7.333333333 + 3.361111114

Reorder the terms:
3.361111114 + -3.666666667x + x2 = 7.333333333 + 3.361111114

Combine like terms: 7.333333333 + 3.361111114 = 10.694444447
3.361111114 + -3.666666667x + x2 = 10.694444447

Factor a perfect square on the left side:
(x + -1.833333334)(x + -1.833333334) = 10.694444447

Calculate the square root of the right side: 3.270236145

Break this problem into two subproblems by setting 
(x + -1.833333334) equal to 3.270236145 and -3.270236145.

Subproblem 1

x + -1.833333334 = 3.270236145 Simplifying x + -1.833333334 = 3.270236145 Reorder the terms: -1.833333334 + x = 3.270236145 Solving -1.833333334 + x = 3.270236145 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.833333334' to each side of the equation. -1.833333334 + 1.833333334 + x = 3.270236145 + 1.833333334 Combine like terms: -1.833333334 + 1.833333334 = 0.000000000 0.000000000 + x = 3.270236145 + 1.833333334 x = 3.270236145 + 1.833333334 Combine like terms: 3.270236145 + 1.833333334 = 5.103569479 x = 5.103569479 Simplifying x = 5.103569479

Subproblem 2

x + -1.833333334 = -3.270236145 Simplifying x + -1.833333334 = -3.270236145 Reorder the terms: -1.833333334 + x = -3.270236145 Solving -1.833333334 + x = -3.270236145 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.833333334' to each side of the equation. -1.833333334 + 1.833333334 + x = -3.270236145 + 1.833333334 Combine like terms: -1.833333334 + 1.833333334 = 0.000000000 0.000000000 + x = -3.270236145 + 1.833333334 x = -3.270236145 + 1.833333334 Combine like terms: -3.270236145 + 1.833333334 = -1.436902811 x = -1.436902811 Simplifying x = -1.436902811

Solution

The solution to the problem is based on the solutions from the subproblems. x = {5.103569479, -1.436902811}

See similar equations:

| 57=x-76 | | 5(r+12)=85 | | 24x^2-16x-24=0 | | 85=13+9h | | log(1000)= | | 5x^4-47x^3+56x^2= | | 7q-(-6)=41 | | Tan70=7/x | | 35+6r=5r+3(r+7) | | 3=y-8 | | -19=-3n+-7 | | log(8x-3)=log(4x+9) | | -19=-3+-7 | | -19=-3+(-7) | | 3+-2r=17 | | 5(1+7x)=5-5x | | 0+5000+x=3.23x | | Log(3m+5)=log(5m+5) | | 1n(3m+5)=1n(5m+5) | | 11=-r/7= | | 9u^2+12uv+4v^2=0 | | 19=3v+10 | | (2/3)-(1/6)/(2/5) | | 4k^2+64k+252=0 | | -35=(-7/9)u | | 5n^2-15n+45=0 | | 5x+10=4x-14 | | 6x-8=5+8 | | x^-3=1/8 | | -5k+25=1-6(6k-4) | | (-5/14)-((1/7x)) | | -1k=55 |

Equations solver categories