3(x+1)-8=14-2x(3x-4)

Simple and best practice solution for 3(x+1)-8=14-2x(3x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+1)-8=14-2x(3x-4) equation:



3(x+1)-8=14-2x(3x-4)
We move all terms to the left:
3(x+1)-8-(14-2x(3x-4))=0
We multiply parentheses
3x-(14-2x(3x-4))+3-8=0
We calculate terms in parentheses: -(14-2x(3x-4)), so:
14-2x(3x-4)
determiningTheFunctionDomain -2x(3x-4)+14
We multiply parentheses
-6x^2+8x+14
Back to the equation:
-(-6x^2+8x+14)
We add all the numbers together, and all the variables
-(-6x^2+8x+14)+3x-5=0
We get rid of parentheses
6x^2-8x+3x-14-5=0
We add all the numbers together, and all the variables
6x^2-5x-19=0
a = 6; b = -5; c = -19;
Δ = b2-4ac
Δ = -52-4·6·(-19)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{481}}{2*6}=\frac{5-\sqrt{481}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{481}}{2*6}=\frac{5+\sqrt{481}}{12} $

See similar equations:

| x​2​+1=7-x | | 10=x÷4 | | 14(x+3)=12(x+2) | | u/3-13=-9 | | -2|x-4|=-10 | | y÷8-14=-7 | | (17+x)=34x | | m/4-6=12 | | 45=5/4x+25 | | ​3=​12r4 | | -4x+3=x-32 | | 3+3×-5=x+2x | | 12=-2p+4 | | m/9+90=7 | | 2x-5x+4x=-3x+4 | | -6(−8x+6)=42x+30 | | –30n=570 | | s​2​+5=30 | | -12(w-10)=48 | | 7x-4-3=7(x-1) | | 3c+7c-6c+9c+3c+2=50 | | 4m+7=-6m-33 | | 4m+7=-6m-33* | | 5x-4+3x+4=180 | | g/2-8=-24 | | 7n+14=63 | | 2x/10=1x/8 | | 3x+1=-80 | | 2w+12=120 | | 1/9(2m-16)=1/3=(2m+4) | | 40w-17w=46 | | 3x+5+x=29 |

Equations solver categories