3(x+1)(x-1)=7x

Simple and best practice solution for 3(x+1)(x-1)=7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+1)(x-1)=7x equation:


Simplifying
3(x + 1)(x + -1) = 7x

Reorder the terms:
3(1 + x)(x + -1) = 7x

Reorder the terms:
3(1 + x)(-1 + x) = 7x

Multiply (1 + x) * (-1 + x)
3(1(-1 + x) + x(-1 + x)) = 7x
3((-1 * 1 + x * 1) + x(-1 + x)) = 7x
3((-1 + 1x) + x(-1 + x)) = 7x
3(-1 + 1x + (-1 * x + x * x)) = 7x
3(-1 + 1x + (-1x + x2)) = 7x

Combine like terms: 1x + -1x = 0
3(-1 + 0 + x2) = 7x
3(-1 + x2) = 7x
(-1 * 3 + x2 * 3) = 7x
(-3 + 3x2) = 7x

Solving
-3 + 3x2 = 7x

Solving for variable 'x'.

Reorder the terms:
-3 + -7x + 3x2 = 7x + -7x

Combine like terms: 7x + -7x = 0
-3 + -7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1 + -2.333333333x + x2 = 0

Move the constant term to the right:

Add '1' to each side of the equation.
-1 + -2.333333333x + 1 + x2 = 0 + 1

Reorder the terms:
-1 + 1 + -2.333333333x + x2 = 0 + 1

Combine like terms: -1 + 1 = 0
0 + -2.333333333x + x2 = 0 + 1
-2.333333333x + x2 = 0 + 1

Combine like terms: 0 + 1 = 1
-2.333333333x + x2 = 1

The x term is -2.333333333x.  Take half its coefficient (-1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
-2.333333333x + 1.361111112 + x2 = 1 + 1.361111112

Reorder the terms:
1.361111112 + -2.333333333x + x2 = 1 + 1.361111112

Combine like terms: 1 + 1.361111112 = 2.361111112
1.361111112 + -2.333333333x + x2 = 2.361111112

Factor a perfect square on the left side:
(x + -1.166666667)(x + -1.166666667) = 2.361111112

Calculate the square root of the right side: 1.536590743

Break this problem into two subproblems by setting 
(x + -1.166666667) equal to 1.536590743 and -1.536590743.

Subproblem 1

x + -1.166666667 = 1.536590743 Simplifying x + -1.166666667 = 1.536590743 Reorder the terms: -1.166666667 + x = 1.536590743 Solving -1.166666667 + x = 1.536590743 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = 1.536590743 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = 1.536590743 + 1.166666667 x = 1.536590743 + 1.166666667 Combine like terms: 1.536590743 + 1.166666667 = 2.70325741 x = 2.70325741 Simplifying x = 2.70325741

Subproblem 2

x + -1.166666667 = -1.536590743 Simplifying x + -1.166666667 = -1.536590743 Reorder the terms: -1.166666667 + x = -1.536590743 Solving -1.166666667 + x = -1.536590743 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = -1.536590743 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = -1.536590743 + 1.166666667 x = -1.536590743 + 1.166666667 Combine like terms: -1.536590743 + 1.166666667 = -0.369924076 x = -0.369924076 Simplifying x = -0.369924076

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.70325741, -0.369924076}

See similar equations:

| -7/3-5-5/2 | | x-7/3-5=x-5/2 | | 4t-20=-19+5t | | x/7-2=x-7 | | x^5-3x^3+2r^2+7=0 | | 48x^2-20x-12=0 | | (8x-6)(6x+2)=0 | | 4-7i/5-4i | | ln(4x)+ln(6)=ln(4x+6) | | 5x(x+6)=7x+42 | | 2+5=4+5 | | 9*3(6*4/8( | | 20=20x-4x^2+1.5 | | 3s-12=-6+5s | | 6(2m-1)= | | 4z-21=-16+9z | | 9+7lnx=8 | | 5.8/-log | | 8=(log)2x-3+3 | | 4x+8y=-3 | | 3(x-4)/4=5(2x-3)/3 | | x/47=42 | | 16t^2+96t+12= | | (7x-7)(2x+7)=0 | | 5x/3=x/45-x/15 | | 7s^2-112=0 | | 18=xy | | 40x=75+25x | | x+4=-x-8 | | 7(-3m+5)=3(1-6m) | | y=(3*x-2)*tan*3*x | | 5z-11=10+z |

Equations solver categories