3(t+3)(t-1)=(t+2)(t+3)

Simple and best practice solution for 3(t+3)(t-1)=(t+2)(t+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(t+3)(t-1)=(t+2)(t+3) equation:



3(t+3)(t-1)=(t+2)(t+3)
We move all terms to the left:
3(t+3)(t-1)-((t+2)(t+3))=0
We multiply parentheses ..
3(+t^2-1t+3t-3)-((t+2)(t+3))=0
We calculate terms in parentheses: -((t+2)(t+3)), so:
(t+2)(t+3)
We multiply parentheses ..
(+t^2+3t+2t+6)
We get rid of parentheses
t^2+3t+2t+6
We add all the numbers together, and all the variables
t^2+5t+6
Back to the equation:
-(t^2+5t+6)
We multiply parentheses
3t^2-3t+9t-(t^2+5t+6)-9=0
We get rid of parentheses
3t^2-t^2-3t+9t-5t-6-9=0
We add all the numbers together, and all the variables
2t^2+t-15=0
a = 2; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·2·(-15)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*2}=\frac{-12}{4} =-3 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*2}=\frac{10}{4} =2+1/2 $

See similar equations:

| 5327x=274682365487264862547547825482354237859256873568 | | 234x=283648726343 | | 234x=234234234234 | | 13(287+384)=x | | 4y-6+2(5y+2)=-2(y+5) | | x-22/6=16 | | -9v+18=-6v+12 | | 3h-6=2h+1 | | -3y-(-10)=16 | | 13-h/8=-26 | | 22/5−0.5y=2.4+1/2y | | (a/5)-8=(-17) | | 1/4(8x+3)=1/3(2x-9) | | 3x+61=-5x-27 | | 11x-11=7x+25 | | 2^x+2^x-1=96 | | 6x+18=3x-23 | | -15x-10=-3x+26 | | 20-f/9=11 | | 1+(4/y)=11/12y | | 14=43x | | 7x/12+2=5x/8 | | -4x-20=29+3x | | 17+4h+2=1-5h | | d+6/3=-13 | | 7(x+4)+1=22 | | X+.025x=67174 | | X+12=4x-12 | | 28+4/9b=13 | | 2(x-5)+5(x+3)=x-3 | | -5w+2(w-3)=6 | | 2/5k-4/5k=-2/5k |

Equations solver categories