If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(n2)=36
We move all terms to the left:
3(n2)-(36)=0
We add all the numbers together, and all the variables
3n^2-36=0
a = 3; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·3·(-36)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*3}=\frac{0-12\sqrt{3}}{6} =-\frac{12\sqrt{3}}{6} =-2\sqrt{3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*3}=\frac{0+12\sqrt{3}}{6} =\frac{12\sqrt{3}}{6} =2\sqrt{3} $
| 2q–24=6 | | -6+12t=16t-6-4t | | -17y=18 | | 9p=-9(-p+13) | | 4b+4+6b+4-2=12 | | 2a^2+4a=48 | | y3+3=6 | | -3x-9=4x+12 | | 0.75x+3.5=10 | | 105=-3(1-9x | | -7-13j=-2j-11j+20 | | 2c+14=18 | | y=1,200*2^5 | | m^2=-11 | | 12-1-16d=11-16d | | -20-12m=-8m+20+20 | | 480=15x | | 16a+2=18 | | 1(6z-2)=32 | | 15+19n=9n-15+16n | | ∠A=8x+74∘ | | −2=2+4y | | 9=-2m+1 | | −2=2+4y | | (x+3)/1+5=45 | | 9353x+2125=1519851 | | (x+3)+5=45 | | –49+2d=19 | | 2x=9/25 | | 54=6(m+2.7) | | -2x²+24=8x | | n/5=100/500 |